Return to search

K(-I) OBSTRUCTIONS TO FACTORING AN OPEN MANIFOLD

Let M('n+k) be an open PL manifold of dimension n + k (GREATERTHEQ) 6, let X be a finite polyhedron, and suppose f:M('n+k )(--->)(' )X(' )x R('k) is a bounded homotopy equivalence. If k (GREATERTHEQ) 1, we use radial engulfing and Siebenmann's twist-gluing (twist = id.) to construct a manifold M(,1) with infinite cyclic cover M and a bounded homotopy equivalence f(,1):M(,1) (--->) X x S('1) x R('k-1). By iterating this construction we obtain a manifold M(,k-1) and a bounded homotopy equivalence f(,k-1):M(,k-1) (--->) X x S('1) x ... x S('1) x R. We show that the Siebenmann obstruction in (')K(,0)(Z(pi)(,1)M(,k-1)) to factoring M(,k-1) = N(,k-1) x R is an element of (')K(,-k+1)(Z(pi)(,1)X). Thus we get a sequence of obstructions (sigma)(,i) (ELEM) K(,-i+1)(Z(pi)(,1)X) , j (LESSTHEQ) i (LESSTHEQ) k, such that M = Y x R('k-j+1), for some PL manifold Y, if and only if each (sigma)(,i) is 0. / Source: Dissertation Abstracts International, Volume: 44-06, Section: B, page: 1858. / Thesis (Ph.D.)--The Florida State University, 1983.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_75117
ContributorsPACHECO, PETER S., Florida State University
Source SetsFlorida State University
Detected LanguageEnglish
TypeText
Format82 p.
RightsOn campus use only.
RelationDissertation Abstracts International

Page generated in 0.0014 seconds