<p>In this thesis a method for solving the Generalized Assignment Problem (GAP) is described. It is based on a reformulation of the original problem into a Set Partitioning Problem (SPP), in which the columns represent partial solutions to the original problem. For solving this problem, column generation, with systematic overgeneration of columns, is used. Conditions that guarantee that an optimal solution to a restricted SPP is optimal also in the original problem are given. In order to satisfy these conditions, not only columns with the most negative Lagrangian reduced costs need to be generated, but also others; this observation leads to the use of overgeneration of columns.</p><p>The Generalized Assignment Problem has shown to be NP-hard and therefore efficient algorithms are needed, especially for large problems. The application of the proposed method decomposes GAP into several knapsack problems via Lagrangian relaxation, and enumerates solutions to each of these problems. The solutions obtained from the knapsack problems form a Set Partitioning Problem, which consists of combining one solution from each knapsack problem to obtain a solution to the original problem. The algorithm has been tested on problems with 10 agents and 60 jobs. This leads to 10 knapsack problems, each with 60 variables.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-5583 |
Date | January 2006 |
Creators | Brommesson, Peter |
Publisher | Linköping University, Department of Mathematics, Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0016 seconds