Uma nova família de distribuições denominada distribuição beta generalizada semi-normal, que inclui algumas distribuições importantes como casos especiais, tais como as distribuições semi-normal e generalizada semi-normal (Cooray e Ananda, 2008), é proposta neste trabalho. Para essa nova família de distribuições, foi realizado o estudo da função densidade probabilidade, função de distribuição acumulada e da função de taxa de falha (ou risco), que não dependeram de funções matemáticas complicadas. Obteve-se uma expressão formal para os momentos, função geradora de momentos, função densidade da distribuição de estatística de ordem, desvios médios, entropia, contabilidade e para as curvas de Bonferroni e Lorenz. Examinaram-se os estimadores de máxima verossimilhança dos parâmetros e deduziu- se a matriz de informação esperada. Neste trabalho é proposto, também, um modelo de regressão utilizando a distribuição beta generalizada semi-normal. A utilidade dessa nova distribuição é ilustrada através de dois conjuntos de dados, mostrando que ela é mais flexível na análise de dados de tempo de vida do que outras distribuições existentes na literatura. / A new family of distributions so-called beta generalized half-normal distribution, which includes some important distributions as special cases, such as the half-normal and generalized half-normal (Cooray and Ananda, 2008) distributions, is proposed in this work. For this new family of distributions, we studied the probability density function, cumulative distribution function and failure rate function (or hazard function), which did not depend on complicated mathematical functions. We obtained a formal expression for the moments, moment generating function, density function of order statistics distribution, mean deviation, entropy, reliability and Bonferroni and Lorenz curves. We examined maximum likelihood estimation of parameters and provided the information matrix. This work also proposed a regression model using the beta generalized half-normal distribution. The usefulness of the new distribution is illustrated through two data sets by showing that it is quite °exible in analyzing lifetime data instead other distributions in the literature.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25022010-103042 |
Date | 29 January 2010 |
Creators | Rodrigo Rossetto Pescim |
Contributors | Clarice Garcia Borges Demetrio, Gauss Moutinho Cordeiro, Edwin Moises Marcos Ortega |
Publisher | Universidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0036 seconds