Return to search

Synthesis of Tabular Financial Data using Generative Adversarial Networks / Syntes av tabulär finansiell data med generativa motstridande nätverk

Digitalization has led to tons of available customer data and possibilities for data-driven innovation. However, the data needs to be handled carefully to protect the privacy of the customers. Generative Adversarial Networks (GANs) are a promising recent development in generative modeling. They can be used to create synthetic data which facilitate analysis while ensuring that customer privacy is maintained. Prior research on GANs has shown impressive results on image data. In this thesis, we investigate the viability of using GANs within the financial industry. We investigate two state-of-the-art GAN models for synthesizing tabular data, TGAN and CTGAN, along with a simpler GAN model that we call WGAN. A comprehensive evaluation framework is developed to facilitate comparison of the synthetic datasets. The results indicate that GANs are able to generate quality synthetic datasets that preserve the statistical properties of the underlying data and enable a viable and reproducible subsequent analysis. It was however found that all of the investigated models had problems with reproducing numerical data. / Digitaliseringen har fört med sig stora mängder tillgänglig kunddata och skapat möjligheter för datadriven innovation. För att skydda kundernas integritet måste dock uppgifterna hanteras varsamt. Generativa Motstidande Nätverk (GANs) är en ny lovande utveckling inom generativ modellering. De kan användas till att syntetisera data som underlättar dataanalys samt bevarar kundernas integritet. Tidigare forskning på GANs har visat lovande resultat på bilddata. I det här examensarbetet undersöker vi gångbarheten av GANs inom finansbranchen. Vi undersöker två framstående GANs designade för att syntetisera tabelldata, TGAN och CTGAN, samt en enklare GAN modell som vi kallar för WGAN. Ett omfattande ramverk för att utvärdera syntetiska dataset utvecklas för att möjliggöra jämförelse mellan olika GANs. Resultaten indikerar att GANs klarar av att syntetisera högkvalitativa dataset som bevarar de statistiska egenskaperna hos det underliggande datat, vilket möjliggör en gångbar och reproducerbar efterföljande analys. Alla modellerna som testades uppvisade dock problem med att återskapa numerisk data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273633
Date January 2020
CreatorsKarlsson, Anton, Sjöberg, Torbjörn
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:066

Page generated in 0.0037 seconds