Cracks are common defects on surfaces of man-made structures such as pavements, bridges, walls of nuclear power plants, ceilings of tunnels, etc. Timely discovering and repairing of the cracks are of great significance and importance for keeping healthy infrastructures and preventing further damages. Traditionally, the cracking inspection was conducted manually which was labor-intensive, time-consuming and costly. For example, statistics from the Central Intelligence Agency show that the world’s road network length has reached 64,285,009 km, of which the United States has 6,586,610 km. It is a huge cost to maintain and upgrade such an immense road network. Thus, fully automatic crack detection has received increasing attention.
With the development of artificial intelligence (AI), the deep learning technique has achieved great success and has been viewed as the most promising way for crack detection. Based on deep learning, this research has solved four important issues existing in crack-like object detection. First, the noise problem caused by the textured background is solved by using a deep classification network to remove the non-crack region before conducting crack detection. Second, the computational efficiency is highly improved. Third, the crack localization accuracy is improved. Fourth, the proposed model is very stable and can be used to deal with a wide range of crack detection tasks. In addition, this research performs a preliminary study about the future AI system, which provides a concept that has potential to realize fully automatic crack detection without human’s intervention.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8747 |
Date | 01 August 2019 |
Creators | Zhang, Kaige |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0018 seconds