Return to search

Influência dos carboidratos e da expressão de genes relacionados à parede celular na floculação de saccharomyces cerevisiae

Made available in DSpace on 2016-12-23T13:49:02Z (GMT). No. of bitstreams: 1
Renan Vasconcelos Santos.pdf: 2145055 bytes, checksum: 12d61fee1beb0fbd0b1b459c9f469ff6 (MD5)
Previous issue date: 2013-04-02 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Since the dawn of civilization, man has used microbial fermentation to produce various consumer goods. The yeast Saccharomyces cerevisiae is undoubtedly the main factor in known fermentation processes, responsible for the production of bread, beer, wine, cachaça and bioethanol. S. cerevisiae was the first eukaryotic organism to have its genome sequenced and has been used for several decades as a model for eukaryotic cellular and molecular studies. The yeast cell wall is a robust structure composed of a structural internal layer of glucan and chitin, and an outer layer of mannoproteins covalently linked to the structural layer, which determine the bulk properties of the cell surface. The flocculation of yeast can be defined as a non-sexual, reversible and calcium-dependent aggregation of cells in multicellular masses, called flocs, with subsequent sedimentation from the medium in which they are suspended. It is a very complex process and depends on numerous factors such as the characteristics of the medium (pH and the presence of cations), conditions of fermentation (oxygenation, sugars, growth temperature, and the ethanol concentration) and the expression of genes of the FLO family. The process involves the interaction of specialized cell wall proteins called lectins, present only in cell flocculants, and carbohydrates (receptors) in the cell wall of neighboring cells. Flocculation properties specifically set may lead to an improvement in the processing of fermentation biotechnology products, such as food, beverages and biofuels. The group s previous data on the identity of flocculation profile between wild yeast strains isolated from different stills showed two strains with a characteristic profile of sedimentation (BT0510 BT0605), while two others (BT0505 and BT0601) showed no flocculation capacity. The objective of this study was to evaluate the relationship between the content of carbohydrates (glucose and mannose) and cell wall-related genes to the flocculation process in order to better understand the factors that cause the difference in behavior flocculant. Yeast cells were grown in YEPD medium and incubated at 28 ° C and 150 rpm agitation. The cell wall was extracted by a combination of sonication, vigorous agitation with glass beads and boiling in detergent solution. After extensive washing with ultrapure water, the pellet containing the cell wall was incubated at 80 ° C to complete drying and determination of dry weight. Then the samples were subjected to hydrolysis with sulfuric acid, precipitation of sulphate ions by adding Ba (OH) 2, and concentration in vacuum. The liberated monosaccharides were analyzed by HPLC on a column of REZEX-RHM, isocratic elution with ultrapure water, differential refraction detector at 60 ° C. The expression levels of FLO genes and genes related to cell wall between a flocculent strain and a non-flocculent were compared using Real Time PCR. No significant difference was found between the levels of glucose and mannose in flocculent and non-flocculent strains, which suggests that the profile of flocculation is not directly related to the concentration of cell wall carbohydrates. Analysis of relative gene expression showed a significant increase in the FLO gene family (FLO1, FLO8 and FLO10) in flocculant strain, confirming expectations. A large increase of 27 times was noted in CWP1 gene, confirming studies suggesting a major importance of this gene for the cell wall and in the flocculation process. There was also an increase in other genes related to the cell wall. Studies of cell wall proteomics, and mass spectrometry analysis may help elucidate the results, and contribute to a better understanding of flocculation in fermentation processes / Desde os primórdios da civilização, o homem utiliza as fermentações microbianas para a produção de diversos bens de consumo. A levedura Saccharomyces cerevisiae é, sem dúvida, o maior expoente dos processos fermentativos conhecidos, responsável pela fabricação do pão, da cerveja, do vinho cachaça e do bioetanol. S. cerevisiae foi o primeiro organismo eucarionte a ter seu genoma sequenciado e vem sendo utilizada há várias décadas como um modelo eucarionte para estudos celulares e moleculares. A parede celular de levedura é uma robusta estrutura composta por uma camada estrutural interna de glucanos e quitina, e uma camada externa de manoproteínas covalentemente ligadas à camada estrutural, que determinam a maior parte das propriedades de superfície da célula. A floculação de levedura pode ser definida como um processo não sexual, reversível e cálcio-dependente de agregação de células em massas multicelulares, chamadas flocos, com a subsequente sedimentação a partir do meio em que elas estão suspensas. É um processo muito complexo e depende de numerosos fatores, tais como as características do meio (pH e a presença de cátions), as condições de fermentação (oxigenação, os açúcares, a temperatura de crescimento, a concentração de etanol) e a expressão dos genes da família FLO. O processo envolve a interação de proteínas especializadas da parede celular denominadas lectinas, presentes apenas em células floculantes, e carboidratos (receptores) na parede celular das células vizinhas. Propriedades de floculação especificamente ajustadas poderia levar a uma melhoria no processamento de produtos biotecnológicos de fermentação, tais como alimentos, bebidas e biocombustíveis. Dados anteriores do grupo sobre a identificação do perfil de floculação entre cepas selvagens de levedura isoladas de diferentes alambiques mostraram duas cepas com um perfil característico de sedimentação (BT0510 e BT0605), enquanto outras duas (BT0505 e BT0601) sem capacidade de floculação. Assim, o objetivo deste trabalho foi avaliar a relação entre o conteúdo de carboidratos (glicose e manose) da parede celular e de genes relacionados à parede com o processo da floculação, a fim de melhor entender os fatores que causam a diferença no comportamento floculante. As células de levedura foram cultivadas em meio YEPD, incubadas a 28 ºC e 150 rpm de agitação. A parede celular foi extraída por combinação de sonicação, agitação vigorosa com pérolas de vidro e de ebulição em solução detergente. Após lavagem extensiva com água ultra pura, o pellet contendo a parede celular foi incubado a 80 ºC para secagem completa e determinação do peso seco. Em seguida, as amostras foram submetidas a uma hidrólise com ácido sulfúrico, precipitação de íons sulfato por adição de Ba(OH)2, e concentração a vácuo. Os monossacarídeos liberados foram analisados por HPLC na coluna REZEX-RHM, eluição isocrática com água ultra pura, detector de refração diferencial a 60 ºC. Por PCR em Tempo Real foram comparados os níveis de expressão dos genes FLO e de genes relacionados à parede celular entre uma cepa floculante e outra não-floculante. Não foi encontrada diferença significativa entre o teor de glicose e manose nas cepas floculantes e não floculantes, o que sugere que o perfil de floculação não está diretamente relacionado com a concentração de carboidratos de parede celular. A análise da expressão gênica relativa mostrou um aumento significativo dos genes da família FLO (FLO1, FLO8 e FLO10) na cepa floculante, confirmando as expectativas. Um grande aumento, de 27 vezes, foi observado no gene CWP1, corroborando com estudos que sugerem uma grande importância deste gene para a integridade da parede celular e para o processo de floculação. Também houve aumento de outros genes relacionados à parede celular. Estudos de proteômica da parede celular, além de análise em espectrometria de massas poderiam ajudar a elucidar os resultados encontrados, e contribuir para o melhor entendimento da floculação nos processos fermentativos

Identiferoai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/5743
Date02 April 2013
CreatorsSantos, Renan Vasconcelos
ContributorsFernandes, Patricia Machado Bueno, Marco, Janice Lisboa de, Guimarães, Marco Cesar Cunegundes, Bravim, Fernanda
PublisherUniversidade Federal do Espírito Santo, Programa de Pós-Graduação em Biotecnologia, UFES, BR, Biotecnologia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formattext
Sourcereponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds