Return to search

Individualised modelling using transductive inference and genetic algorithms

While inductive modeling is used to develop a model (function) from data of the whole problem space and then to recall it on new data, transductive modeling is concerned with the creation of single model for every new input vector based on some closest vectors from the existing problem space. This individual model approximates the output value only for this input vector. However, deciding on the appropriate distance measure, number of nearest neighbours and a minimum set of important features/variables is a challenge and is usually based on prior knowledge or exhaustive trial and test experiments.Proposed algorithm - This thesis proposes a Genetic Algorithm (GA) method for optimising these three factors using a transductive approach. This novel approach called Individualised Modeling using Transductive Inference and Genetic Algorithms (IMTIGA) is tested on several datasets from UCI repository for classification task and real world scenario for pest establishment prognosis and results show that it outperforms conventional, inductive approaches of global and local modelling.

Identiferoai:union.ndltd.org:ADTP/173270
CreatorsMohan, Nisha
PublisherAUT University
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsAll items in ScholarlyCommons@AUT are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated.

Page generated in 0.0018 seconds