Thesis advisor: Abhishek Chatterjee / Thesis advisor: Eranthie Weerapana / Over the past twenty years, the site-specific incorporation of unnatural amino acids (UAAs) into a target protein through genetic code expansion (GCE) has emerged as one of the foremost technologies to selectively modify proteins in their native cellular context. This technology relies on engineered aminoacyl-tRNA synthetase (aaRS)/tRNA pairs that are orthogonal to the host cells’ endogenous aaRS/tRNA pairs. Traditionally, scientists look towards evolutionarily distant domains of life to identify orthogonal aaRS/tRNA pairs that can be further engineered for GCE applications in the host system. For example, bacterial aaRS/tRNA pairs are used for GCE in eukaryotes. The directed evolution of orthogonal aaRS/tRNA pairs for eukaryotic GCE has been less fortuitous due to the cumbersome nature of established yeast-based selection platforms. Recently, our lab circumvented this platform-based limitation by developing “altered translational machinery” (ATM) Escherichia coli strains that enabled the directed evolution of bacterial aaRS/tRNA pairs for eukaryotic GCE applications. In the ATM-tyrosyl (ATMY) E. coli strain, reintroduction of the E. coli tyrosyl-tRNA (tRNAEcTyrCUA) as a nonsense suppressor led to cross-reactivity with the endogenous E. coli glutaminyl-tRNA synthetase (EcGlnRS), restricting the activity range of aaRSs that could be selected, ultimately diminishing the scope of incorporable UAAs. To recover the dynamic range of this platform, cross-reactivity of the tRNAEcTyrCUA was eliminated through directed evolution of the tRNA acceptor stem. This new, orthogonal tRNA revealed weak mutant aaRSs whose suppression efficiencies were boosted through additional rounds of directed evolution. Improved aaRS mutants exhibited higher solubility, thermal stability, and suppression efficiency than their predecessor. While the newly engineered, orthogonal tRNAEcTyrCUA gave access to novel aaRS/tRNA pairs for eukaryotic GCE, some notable UAAs were still missing that could be incorporated with the archaeal Methanococcus jannaschii tyrosyl-tRNA synthetase (MjTyrRS)/tRNA pair in bacteria. Following a systematic investigation into the discrepancy between the E. coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNA and MjTyrRS/tRNA pairs, we found that it can be partially attributed to the low structural robustness of the EcTyrRS. This limitation was overcome by rationally designing chimeric TyrRSs composed of EcTyrRS and a structural homologue from the thermophilic bacterium Geobacillus stearothermophilus. The chimeric scaffolds demonstrated enhanced stability, activity, and resilience to destabilizing active site mutations, offering a potentially more attractive scaffold for GCE. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_109076 |
Date | January 2021 |
Creators | Grasso, Katherine Taylor |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0018 seconds