Return to search

Identifizierung und Charakterisierung von krankheitsassoziierten Mikrodeletionen mit modernen molekularzytogenetischen Methoden / Identification and characterization if disease associated microdeletions with modern molecular cytogenetic methods

Das Hauptziel der medizinischen Genetik ist es, die Ursachen für genetisch hervorgerufene Krankheiten zu finden, um eine bessere Behandlung der Patienten zu gewährleisten, sei es um die Medikamente auf den Metabolismus des Individuums anzupassen oder natürlich dazu, um die Krankheit selbst zu behandeln und in Zukunft auch heilen zu können. Um dieses Ziel zu erreichen werden immer neue Technologien entwickelt, die mit Hilfe von bereits etablierten Methoden auf ihre Eignung hin überprüft werden müssen. Eine der neuesten Entwicklungen stellt die Array-Technologie dar. In dieser Studie wurde versucht zu überprüfen, inwieweit diese neue Methode zur Analyse von einzelnen bis wenigen Patienten mit bestimmten Syndromen geeignet ist. Dafür wurden mehrere Patienten mir sehr unterschiedlichen Phänotypen ausgesucht, die verschiedene Ursachen und Entstehungsmechanismen der genetischen und phänotypischen Veränderung vermuten ließen. Die erste hier dargestellte Publikation beschreibt einen Fall mit einer einseitigen Schalleitungsschwerhörigkeit, der mit einer Translokation der(18)t(18;22) mit der involvierten Deletion 22pter→q11.21, sowie den darin enthaltenden Genen der CES-Region, erklärt wurde. Der in der zweiten Publikation beschriebene Fall mit MR und Verhaltensauffälligkeiten wurde mit einer intragenischen Mikrodeletion im Gen IL1RAPL1 korreliert. Zwei Fälle autoimmunbedingten Leberversagens bei einem Phelan-McDermid Syndrom wurden in der dritten Publikation primär auf eine Deletion des Gens PIM3 zurückgeführt. Ein autistischer Junge mit einer Entwicklungsverzögerung und gewalttätigen Ausbrüchen zeigte in der vierten Publikation ein sehr komplexes Rearrangement mit mehreren Brüchen im Gen CNTNAP2 und Deletionen anderer Gene, die zusammen für den Phänotyp verantwortlich sein können. Keine Mikrodeletion, sondern eine Epimutation in Chromosom 14q32.2 war die Ursache für die Adipositas mit einer Sprachentwicklungsverzögerung bei einem Jungen, der in der fünften Publikation beschrieben ist. Um die o. g. genetischen Veränderungen zu finden, wurden verschiedene Methoden wie die GTG-Bänderung, FISH, MLPA und verschiedene Array-Systeme verwendet. Mit jeder von diesen Methoden konnten neue und einander ergänzende Daten zu den genetischen Veränderungen eines Individuums gewonnen werden. Keine der Methoden konnte für sich allein ein vollständiges Bild liefern. Die GTG-Bänderung zeigt zwar das ganze Genom, hat aber die Limitierung der niedrigen Auflösung. Sie konnte dennoch Anhaltspunkte für höherauflösende Untersuchungsmethoden geben. Dazu gehörte die FISH, die entweder zur feineren Auflösung der Bänderungsdaten oder zur Bestätigung von Array-Befunden verwendet wurde. Die MLPA wurde unterstützend auf der Suche nach sehr kleinen Veränderungen in eingegrenzten Regionen eingesetzt. In einigen der beschriebenen Fälle wurden trotz eines negativen Bänderungsbefundes aufgrund des auffälligen Phänotyps genetische Ursachen vermutet, und daher feiner auflösende Methoden eingesetzt. Die am höchsten auflösenden Array-basierten Methoden wurden eingesetzt, wenn ansonsten keine Ergebnisse zu erzielen waren, oder eine feinere Auflösung der vorhandenen Daten erreicht werden sollte. Anschließend konnten die Erkenntnisse über die Veränderungen mit dem Phänotyp korreliert werden, um ein Kandidatengen oder eine Kandidatengenregion zu ermitteln. Aufgrund der großen Datenmenge aus den Array-Experimenten, waren zur Entscheidung über die Relevanz der Daten bezüglich der Entstehung des Phänotyps umfassende Datenbank- und Literatur-Recherchen notwendig. Zusammenfassend kann gesagt werden, dass die Array-Technologie einen großen Fortschritt darstellt, in der Suche nach Ursachen für genetische Erkrankungen. Sie hat aber technische Limitierungen und um das Problem der Phänotyp-Genotyp-Korrelation zu vereinfachen, werden weltweit noch viele Daten gesammelt werden müssen. Das ist eine Frage der Zeit und der Weiterentwicklung geeigneter Technologien. / The major aim of medical genetics is to find the reasons for genetic diseases, to ensure better treatment of patients, for example to better adapt medication to the patient’s metabolism or to treat and in the future also to cure the illness. To reach this goal new technologies are developed, which have to be tested for their applicability by already established methods. One of the newest developments is constituted by the array-technology. In this study it has been tried to find out to which extent this new method is suited for testing individual or few patients with certain syndromes. To do that several patients have been chosen with very different phenotypes, for which different mechanisms underlying the genetic and phenotypic changes were presumed. The first paper presented here describes a case with unilateral conductive hearing loss, which was explained by the translocation der(18)t(18;22) including the deletion of the region 22pter→q11.21 and the genes of the CES region. The case with MR and behavioral abnormalities described in the second paper was associated with an intragenic deletion of IL1RAPL1. Two cases of hepatic failure caused by an autoimmune reaction in patients with the Phelan-McDermid syndrome were explained by the deletion of PIM3 in the third paper. In the fourth paper an autistic boy with a developmental delay and violent outbursts had a very complex rearrangement containing many breaking points in CNTNAP2 and deletion of other genes, which altogether explain the phenotype. Not a microdeletion, but an epimutation in 14q32.2 was the cause for the obesity with a speech delay in a boy described in the fifth paper. Different methods were used to find the above mentioned genetic changes, i.e. GTG-banding, FISH, MLPA and several array-systems. Each of these methods revealed new and complementing data about the genetic changes of an individual. None of the methods alone could provide a complete picture. GTG-banding shows the entire genome, but has the limitation of a low resolution. This banding method provided candidate regions for further investigations with higher resolving methods. FISH was used for this cause or to confirm array data. MLPA was used to search for very small changes in specific regions. In some of the described cases with negative findings in the GTG-banding but a noticeable phenotype, genetic cause was assumed and higher resolving methods were used. The method with the highest resolution were the array-based technologies, which were used as screening method if no information could be obtained by any other method. Finally, the findings on the genetic changes were correlated with the phenotype to determine the candidate gene or a candidate gene region. Due to the large amount of data obtained from the array-experiments, the correlation required a decision about the relevance of the data for the development of the phenotype based on thorough database research. Collectively, it can be said that the array-technology is a useful technique for searching for reasons of genetic diseases. But it has its technical limitations. To facilitate the problem of the phenotype-genotype-correlation, data has to be accumulated worldwide. It is a question of time and further development of adequate technologies.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:5239
Date January 2011
CreatorsDamatova, Natalja
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0149 seconds