Endosymbiotic gain and transfer of plastids is a widespread evolutionary phenomenon and a major driving force of eukaryotic evolution. The integration of a new organelle is accompanied by changes in its structure, gene content, molecular mechanisms for biogenesis and transport, and re-wiring of the host and organelle metabolic pathways. To understand the course and underlying mechanisms of plastid evolution, it is important to study these processes in variety of secondary algae and notice their differences and similarities. Euglenophytes gained their plastids from green eukaryotic algae after a long history of heterotrophic lifestyle. In my thesis, I participated in analyses of newly generated sequence datasets: transcriptomes of Euglena gracilis and Euglena longa and mass spectrometry-determined proteome of E. gracilis plastid with especial regard to the potential novelties associated with plastid gain and incorporation. In the resulting publications we particularly focus on plastid protein import machinery and targeting signals and report extremely reduced TIC and completely absent TOC in euglenophyte plastid. Using the proteomic dataset, we predict potential novel plastid protein translocases recruited from ER/Golgi and re-analyze plastid signal domains, characterizing previously overlooked...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:409094 |
Date | January 2019 |
Creators | Novák Vanclová, Anna |
Contributors | Hampl, Vladimír, Gruber, Ansgar, Maier, Uwe |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds