Return to search

Rapid Climate Change in the Cenozoic: Insights from Geochemical Proxies

Studying the mean state and variability of past climate provides important insight into the dynamically coupled climate system, directly aiding projections of future climate. Reconstruction of past climate conditions can be achieved using geochemical proxies including the novel clumped isotope paleothermometer. In this thesis I use multiple proxies to study climate variability during the last glacial period and at the onset of Antarctic glaciation.
Greenland ice cores record repeated millennial-scale fluctuations in climate during the last glacial period known as Dansgaard-Oeschger (DO) cycles. We measure 18O of bulk sediment and planktonic foraminifera (Neogloboquadrina Pachyderma) in sediment cores from the North Atlantic to investigate fluctuations in sediment properties on the timescale of DO cycles. We find evidence of episodic deposition of carbonate ice-rafted debris near Iceland. Integrating these observations with published data and modeling studies, we propose a new hypothesis to explain DO cycles. We suggest that a large ice shelf in the Nordic Seas acted in concert with sea ice to set the slow and fast timescales of DO cycles. The ice shelf was periodically removed by subsurface warming with the timescale of shelf regrowth setting the duration of each interstadial.
We utilize the clumped isotope proxy to reconstruct the climate history during a key period of the Cenozoic - the onset of Antarctic glaciation. To facilitate this work, a new inlet is developed to streamline sample preparation and reduce sample size requirements. We decrease the required sample size from 5-8mg to 1-2mg per replicate, while still achieving external precision of 0.005-0.010o/oo, equivalent to previous methods. This new capability increases the range of possible applications for the clumped isotope paleothermometer, specifically in the field of paleoceanography. We apply the clumped isotope paleothermometer to thermocline-dwelling foraminifera (Subbotina angiporoides and Subbotina utilisindex) from the Southern Ocean core ODP689 across the Eocene-Oligocene transition. With the clumped isotope paleothermometer we separate the contributions of near- surface temperature change and ice sheet growth on the ~1o/oo increase in 18O observed in planktonic foraminifera from this site. We measure no change in temperature, and 0.8±0.2o/oo change in 18Osw, equivalent to 124-140% of the modern Antarctic ice sheet volume. / Earth and Planetary Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/13064985
Date01 January 2015
CreatorsPetersen, Sierra Victoria
ContributorsSchrag, Daniel P.
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0168 seconds