<p> Strain evolution and stress evolution following the 4 April 2010 M7.2 El Mayor-Cucapah earthquake are modeled using an adaptation of the strain transient detection tool developed by <i>Holt and Shcherbenko</i> 2013. The evolution of stress is calculated from postseismic strains, which are modeled from continuous GPS horizontal displacements. Strain fields are modeled in 2 ways; the total strain field based on total observed cGPS displacements, and the residual strain field, which subtracts a reference field from the total model. The residual shows anomalous strains resulting from the postseismic relaxation of the 2010 event. Anomalous and total strains are modeled in 0.1 year epochs for 2.4 years following the event. Both total and anomalous strains are converted into stress changes over time, assuming elastic incompressible behavior. Following the El Mayor event, the GPS constrained strain evolution shows the following: (1) The Southern San Andreas experiences a reduced rate of right-lateral strike slip strain accumulation between 3 July 2010 and 7 August 2012 (Figure 16a-d). (2) The San Jacinto Fault has normal rate of right-lateral strike-slip strain accumulation during this time. (3) Before the Brawley swarm of 26 August 2012, the state of strain evolves to enable unclamping of a left-lateral fault zone in the Brawley Seismic Zone (Figure 16a-d). (4) Large shear strains accumulate on the Laguna Salada Fault (northernmost segment)/southern Elsinore FZ (Figure 16a-d). We converted the strain changes into Coulomb stress changes on existing faults (both right-lateral and left-lateral). Several regions show increased Coulomb stress changes throughout the postseismic process. Furthermore, the Coulomb stress changes on the faults in the region progressively increase toward failure up to the time of the Brawley swarm.</p>
Identifer | oai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:1567846 |
Date | 07 November 2014 |
Creators | Shcherbenko, Gina Nicole |
Publisher | State University of New York at Stony Brook |
Source Sets | ProQuest.com |
Language | English |
Detected Language | English |
Type | thesis |
Page generated in 0.0015 seconds