Return to search

A Light Detecting and Ranging (LiDAR) and Global Positioning System (GPS) Study of the Truckee Meadows, NV. Quaternary Fault Mapping with ArcGIS, 3D Visualization and Computational Block Modeling of the Greater Reno area

<p> The Truckee Meadows (Reno, NV) sits in a tectonically complex area of western Nevada, where Walker Lane-style transtension is dominant throughout the region. A new Light Detection and Ranging (LiDAR) study focuses on the Truckee Meadows region of western Nevada, including the Reno/Sparks metropolitan area in Washoe County. We use the airborne LiDAR imagery (1485 sq. km) to create high quality, bare-earth topographic maps that were previously unattainable in vegetated, populated or alpine terrain. This approach gives us an opportunity to improve fault maps that may be outdated or incomplete in the area. Here we provide LiDAR imagery of a large section of Washoe County and an updated fault map of the greater Truckee Meadows region. </p><p> We also use this new LiDAR survey of the Truckee Meadows and nearby basins to constrain geometry, length, distribution, and slip rates along faults imaged by this new dataset. Estimated slip rates are compared to those derived from a geodetic block model constrained by Global Positioning Station (GPS) data to test for consistency. GPS station data and geologic mapping show that both east-west oriented extension and northwest-oriented right-lateral strike slip accommodate transtension as a backdrop for tectonics studies of region, with some northeast-oriented left-lateral strike slip. This study aims to better understand how this transtension is partitioned along remapped faults and newly identified structures in this urban setting, as the framework for strain accommodation in this area remains poorly understood. </p><p> Faults with normal offset were measured along strike using bare-earth LiDAR returns to determine the amount of vertical separation across geomorphic surfaces, and then converted to extension assuming a fault dip of 60 (+/-10) degrees. Since the primary geomorphic surfaces in this region are the result of Sierra Nevadan glacial outwash episodes, we use previously published geologic maps to link each surface to an associated date. When integrated across several basin perpendicular transects within the Mt. Rose pediment, we calculate a total extension rate of 0.87 (+0.40/-0.48) mm/yr for the southern Truckee Meadows basin. Integrated slip rates from fault scarp offsets are within the bounds of 1.23 (+/-0.70) mm/yr suggested by geodetic modeling. Block modeling highlights that north-striking faults primarily accommodate east-west extension, and so northwest-striking faults and/or block rotations must accommodate the northwest-directed shear seen in GPS velocities. This trend is bolstered by the discovery of a new northwest-oriented fault on Peavine Mountain 6 km east of the Mogul (2008) seismicity trend. Our study provides further evidence that the Truckee Meadows sits at a critical transition from north-striking normal faults in the southern part of the basin to northwest-oriented strike-slip faults to the north, an observation that mimics regional tectonics and geomorphology of the adjacent Lake Tahoe/Truckee system to the west.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10126167
Date04 August 2016
CreatorsBrailo, Courtney M.
PublisherUniversity of Nevada, Reno
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0017 seconds