Return to search

Neoarchaean clastic rocks on the Kaapvaal Craton : provenance analyses and geotectonic implications

The provenance of the Neoarchaean Ventersdorp Supergroup and several age-related supracrustal successions was analysed to gain insight into the geotectonic evolution of the Kaapvaal Craton during the transition from the Archaean to Proterozoic Eras. The studied successions include, besides the siliciclastic formations of the Ventersdorp Supergroup, the upper Wolkberg and Buffelsfontein Groups, the Godwan Formation and the Schmidtsdrift Subgroup of the basal Transvaal Supergroup in Griqualand West. Petrographic, whole rock geochemical and Sm-Nd isotopic analyses were combined with SHRIMP U-Pb age dating of detrital zircons. Furthermore, Rb-Sr isotopic studies were carried out on carefully selected suites of samples from surface exposure or, wherever possible, on deep diamond drill core. The Ventersdorp Supergroup is an up to 5 km thick undeformed, only slightly metamorphosed volcano-sedimentary succession deposited on the Kaapvaal Craton between 2714 Ma and 2665 Ma. A lack of major time hiati to the underlying Mesoarchaean Witwatersrand Supergroup and covering Neoarchaean to Palaeoproterozoic Transvaal Supergroup render the Ventersdorp Supergroup very well suited for the investigation of the geotectonic evolution of the Kaapvaal Craton near the Archaean-Proterozoic boundary. This is supported by its excellent preservation, which also allowed detailed studies of sedimentological structures, such as seismites indicating Neoarchaean earthquakes. The provenance analyses carried out on the clastic formations of the Ventersdorp Supergroup point to a gradual change in tectonic evolution from typically Archaean to post-Archaean processes rather than a drastic, unique transition in the case of the Kaapvaal Craton. Texturally immature wackes of the Kameeldoorns Formation, representing the oldest clastic units of the Ventersdorp Supergroup, are derived mainly from Mesoarchaean source rocks, whereas the stratigraphically younger Bothaville Formation displays geochemical signatures comparable with Archaean trondhjemite-tonalite granodiorite-suites (TTGs), thus suggesting crustal addition in the so-called ‘Archaean-style’. The extension of provenance analyses to supracrustal successions that are tentatively correlated with the Bothaville Formation, revealed contributions from granitoid V sources that formed under post-Archaean and Archaean conditions. Furthermore, the geochemical data for all analysed formations support a passive margin setting. Arc settings, as indicated in some samples, are due to the input of less fractionated volcanic material that provides evidence of distal volcanism. Analyses of Nd-isotopic systematics and U-Pb ages of detrital zircons revealed a Mesoarchaean age for the source rocks of the formations. U-Pb age dating of detrital zircons of the Godwan Formation suggests that this formation is of Mesoarchaean age, and therefore not a correlative of the other Neoarchaean successions. Hence, the results suggest that the continental crust of the Kaapvaal Craton was thick enough since the Mesoarchaean (2.8 - 3.1 Ga) to allow long-term crustal recycling, and therefore modern plate tectonic processes could have operated earlier than on other well-studied cratonic blocks. During the Neoarchaean, however, crustal thickening of the Kaapvaal Craton took place by accretion of Archaean-style TTGs along the margins of the craton. Thus, Archaean and post-Archaean tectono-magmatic processes co-existed. Furthermore, the Neoarchaean supracrustal successions represent the first sedimentation events on an entirely stabilised and tectonically quiescent Kaapvaal Craton. Input from distal volcanic sources marks the last sign of volcanic activity prior to the craton-wide deposition of carbonate rocks of the Transvaal Supergroup. Geochronological data also imply a connection of the Neoarchaean Kaapvaal Craton to further cratonic blocks that may hold source rocks for the studied formations, as for some small age populations of older detrital zircons (ca. 3.1 - 3.4 Ga), no suitable source area could be identified on the Kaapvaal Craton itself. However, it seems unlikely that the Zimbabwe Craton was one of these cratonic blocks, because the Rb-Sr whole rock ages of all studied formations yield a model age of 2092 ± 55 Ma, which is thought to correspond to a craton-wide influence of the 2.05 Ga old Bushveld Igneous Complex on the Rb-Sr isotope systematics of all analysed clastic successions. This influence is apparently missing in the Southern and Central Marginal Zones of the Limpopo Belt, suggesting that the collision between the Kaapvaal and Zimbabwe Cratons only took place after the emplacement of the Bushveld Igneous Complex, i.e. after 2.05 Ga. / Dr. U. Zimmermann Prof. J. Gutzmer

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:7672
Date13 August 2008
CreatorsSchneiderhan, Eva Anita
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds