This master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the form of Lagrange's equations and D’Alembert’s principle is applied. Actually this thesis is a continuation of the study going at VUT about the simulations of non-holonomic mechanisms, specifically robotic snakes. The kinematics model was well-examined in the work of of Byrtus, Roman and Vechetová, Jana. So here we provide equations of motion and address the motion planning problem regarding dynamics of the trident snake equipped with active joints through basic examples and propose a feedback linearization algorithm.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417115 |
Date | January 2020 |
Creators | Shehadeh, Mhd Ali |
Contributors | Návrat, Aleš, Vašík, Petr |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0024 seconds