Return to search

A distribuição beta semi-normal generalizada geométrica / The beta generalized half-normal geométric distribution

Com o avanço tecnológico aprimorado, diferentes comportamentos do tempo de vida vem sendo estudados, e com isso é necessário a criação de novos modelos, muitas vezes mais complexos, para melhor ajuste e inferência sobre a população em estudo. A distribuição beta semi-normal generalizada é útil para modelagem de tempos de vida, e com isso propomos neste trabalho uma distribuição mais ampla chamada distribuição beta semi-normal generalizada geométrica, cuja função de risco pode assumir as formas crescente, decrescente, forma de banheira ou modal. A função densidade da nova distribuição é escrita como uma combinação linear da função densidade da distribuição beta semi-normal generalizada, sendo assim, algumas importantes propriedades da nova distribuição foram obtidas, como: momentos, assimetria, curtose, função geradora de momentos, desvios médios, função quantíl e curvas de Lorenz e de Bonferroni. Para a estimação dos parâmetros, é utilizado o método de máxima verossimilhança. Também foi proposto no trabalho, o novo modelo de regressão baseado na distribuição beta semi-normal generalizada geométrica, os quais podem ser muito úteis em análise de dados reais por serem mais flexíveis. / Due to the technological improved advances, different behaviors of the lifetime has been studied and for this reason, it is necessary to create new statistical models, many times more complex, for the better fit and inferences about the population under study. The beta generalized half-normal distribution is useful for modeling lifetime data, and in this sense, we propose, in this work, a wider distribution called the geometric beta generalized half-normal distribution in which the hazard function takes the forms increasing, decreasing, bathtub and unimodal. The density function of the new distribution can be written as a linear combination of the beta generalized half-normal densities, and thereby, some properties of the new distribution can be obtained such as the moments, skewness, kurtosis, moment generating function, mean deviations, quantile function and Lorenz and Bonferroni curves. For the estimation of the parameters, we use the maximum likelihood method considering the presence of censored data. We also propose a new regression model based on the geometric beta generalized half-normal distribution, which can be very useful in the analysis of real data due to their flexibility.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22082013-154605
Date21 June 2013
CreatorsThiago Gentil Ramires
ContributorsEdwin Moises Marcos Ortega, Artur José Lemonte, Mario Javier Ferrua Vivanco
PublisherUniversidade de São Paulo, Agronomia (Estatística e Experimentação Agronômica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds