Return to search

An R*-Tree Based Semi-Dynamic Clustering Method for the Efficient Processing of Spatial Join in a Shared-Nothing Parallel Database System

The growing importance of geospatial databases has made it essential to perform complex spatial queries efficiently. To achieve acceptable performance levels, database systems have been increasingly required to make use of parallelism. The spatial join is a computationally expensive operator. Efficient implementation of the join operator is, thus, desirable. The work presented in this document attempts to improve the performance of spatial join queries by distributing the data set across several nodes of a cluster and executing queries across these nodes in parallel. This document discusses a new parallel algorithm that implements the spatial join in an efficient manner. This algorithm is compared to an existing parallel spatial-join algorithm, the clone join. Both algorithms have been implemented on a Beowulf cluster and compared using real datasets. An extensive experimental analysis reveals that the proposed algorithm exhibits superior performance both in declustering time as well as in the execution time of the join query.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1331
Date20 January 2006
CreatorsGanpaa, Gayatri
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0018 seconds