Return to search

Interval-Valued Kriging Models with Applications in Design Ground Snow Load Prediction

One critical consideration in the design of buildings constructed in the western United States is the weight of settled snow on the roof of the structure. Engineers are tasked with selecting a design snow load that ensures that the building is safe and reliable, without making the construction overly expensive. Western states use historical snow records at weather stations scattered throughout the region to estimate appropriate design snow loads. Various mapping techniques are then used to predict design snow loads between the weather stations. Each state uses different mapping techniques to create their snow load requirements, yet these different techniques have never been compared. In addition, none of the current mapping techniques can account for the uncertainty in the design snow load estimates. We address both issues by formally comparing the existing mapping techniques, as well as creating a new mapping technique that allows the estimated design snow loads to be represented as an interval of values, rather than a single value. In the process, we have improved upon existing methods for creating design snow load requirements and have produced a new tool capable of handling uncertain climate data.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8712
Date01 August 2019
CreatorsBean, Brennan L.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0021 seconds