Return to search

2D Modelling of Geosynthetically Reinforced Piled Embankments : Calibration Methods in PLAXIS 2D & Review of Analytical Guidelines

This thesis focuses on the 2D modelling of Geosyntheticaly Reinforced Piled Embankments (GRPE) in PLAXIS 2D. In doing so, it explores two main aspects: 1) the calibration of Interface Stiffness Factors (ISFs) governing the soil-pile interaction of Embedded BeamRow (EBR) elements in PLAXIS 2D, and 2) the prospects and limitations of modelling geogrids (GR) in PLAXIS 2D when underlain by EBR elements; although several studies have validates the EBR element in modelling piles, none address the geogrid-EBR interaction and its implications on modelling GRPE systems. The thesis performs the calibration and validation processes using the full-scale GRPE structure ASIRI (Amélioration des Sols parInclusions Rigide) as documented in Briançon and Simon, 2012 and Nunez et al., 2013. Calibration of the EBR’s ISFs is done against 1) load-displacement curve of a test pile, 2)load-displacement of the structure’s monitored piles, and 3) differential soil-pile settlement. Model results for soil settlement, pile settlement, and pile load are then compared to reported values from the ASIRI site. Results show that the natural deviation between the structure and test pile’s load - displacement results in a wide range of possible calibration values for the ISFs, making calibration based on a test pile’s load-displacement curve an unpractical method. Even when such natural deviations were eliminated by calibrating the model against the structure’s reported values for pile load-displacement, model predictions for subsoil displacement were compromised. It is thus advisable to calibrate the EBR element with respect to soil settlement, pile settlement, and pile load rather than solely on a load-displacement curve as to avoid high divergences in soil-pile differential settlement. Modelling geogrids in GRPE systems, PLAXIS 2D underestimates GR strain due to its inability to simulate GR deflection: EBR elements are superimposed on top of a continuous soil mesh, thus allowing the embankment soil to settle through the EBR element. This unrealistically minimizes GR deflection, which underestimates GR strain when modelling GRPEs in PLAXIS 2D. In addition to validating the 2D modelling of GRPE systems, the thesis conducts a comparative literature review of GRPE design guidelines, focusing on the British BS8006 (2010), the German EBGEO (2011), and the Dutch CUR226 (2016). It then applies the latter two to the ASIRI full scale case study and compares results for predicted maximum GR strainand displacement to those from the PLAXIS 2D model and ASIRI measurements. The literature review shows that the geogrid load distribution is highly dependent on the state of subsoil support, where a uniform distribution is more appropriate for high subsoil support, and an inverse-triangular one more appropriate for low subsoil support. However, the analytical analysis of the ASIRI case shows that the triangular distribution, previously dismissed as unrealistic by the literature review, gives satisfactory results due to a combination of soil sliding and high subsoil support at the ASIRI site. / Examensarbetet utvärderar 2D modellering av bankpålning med geosyntetisk armering (Geosyntheticallt Reinforced Piled Embankments – GRPE) i PLAXIS 2D. Examensarbetet utforskar två huvudaspekter: 1) kalibrering av Interface Stiffness Factors (ISFs) som styrjord-påle samspelet av Embedded Beam Row (EBR) element i PLAXIS 2D, och 2) möjligheter och begränsningar vid modellering av geonät i PLAXIS 2D när de ligger över EBR element. Även om flera studier har validerat användningen av EBR element för modelleringenav pålning, har inga behandlat samspelet geonät-EBR samt dess implikationer på modelleringen av GRPE. I arbetet har kalibrerings- och valideringsprocesser genomförts genom att använda den fullskaliga GRPE strukturen ASIRI (Amélioration des Sols par Inclusions Rigide) som dokumenterats i Briançon och Simon(2012) samt Nunez et al. (2013). Kalibrering av EBR ISFshar utförts mot: 1) last/förskjutningssamband av testpålar, 2) last/förskjutningssambad av övervakade pålar i strukturen, och 3) jord-påle differenssättningen. Modellens resultat försättningar i jorden, deformation i pålarna och lasten i pålarna jämförs med mätningar från ASIRI. Resultaten visar att naturliga avvikelser mellan strukturens- och testpålens last/förskjutningssambad resulterar i ett brett spektrum av möjliga kalibreringsvärden för ISFs, som gör kalibrering mot testpålens last/förskjutningssambad opraktisk. Även vid justering för detta genom kalibrering mot strukturpålens last/förskjutningssambad minskade modellens noggrannhet för sättningar i jorden. Det är således lämpligt att kalibrera EBR element motsättningar i jorden, deformation i pålarna och lasten i pålarna i stället för bara last/förskjutningssambaden för att undvika hög divergens i differenssättningen jord-påle. Vid modellering av GRPE-geonät underskattar PLAXIS 2D töjningen i geonäten på grund av sin oförmåga att simulera geonätens utböjning. EBR element ligger över ett kontinuerligt beräkningsnät av jord (soil mesh) som tillåter bankfyllningen att sätta genom EBRelement. Detta förhindrar utböjningen i geonätet som resulterar i en underskattning av töjningen i nätet vid modellering av GRPE i PLAXIS 2D. Förutom validering av 2D modelleringen av GRPE strukturer utför examensarbetet en jämförande literaturstudie av GRPE dimensioneringsriktlinjer med fokus på Brittisk BS8006 (2010), Tysk EBGEO (2011), och Nederländsk CUR226 (2016). De två sista nämnda riktlinjerna tillämpas på ASIRI för att prognosticera maximum geonättöjning och utböjning. Beräkningsresultat jämförs med värden från PLAXIS 2D modellen och mätningar från ASIRI. Litteraturstudien visar att geonätens belastningsfördelning är beroende främst på stödet från den underliggande jorden. Likformig belastningsfördelningen är lämpligare för en hög stödnivå och en invers-triangulär belastningsfördelningen för en låg stödnivå. Dock visar den analytiska analysen av ASIRI strukturen att en triangulär belastningsfördelning, som ansågs vara orealistisk i litteraturstudien, ger tillfredsställande resultat. Det är på grund av kombinationen av ’jordensglidning’ och hög stödnivå från den underliggandejorden i ASIRI:s fall.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-291424
Date January 2021
CreatorsSleiman, Maya
PublisherKTH, Jord- och bergmekanik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-ABE-MBT ; 2120

Page generated in 0.0029 seconds