Return to search

A variação humana na geração de expressões de referência / The human variation in the referring expression generation task

Este documento apresenta um estudo em nível de mestrado na área de Geração de Língua Natural (GLN), enfocando a questão da variação humana na tarefa de Geração de Expressões de Referência (GER). O trabalho apresenta um levantamento bibliográfico sobre o tema, a criação de dois algoritmos de GER e a construção de um novo córpus de expressões de referência. Modelos computacionais de GER baseados nos algoritmos criados foram implementados em versões que incorporam e não incorporam a variação humana e empregados em uma série de experimentos de GER em sete córpus de expressões de referência. Resultados comprovam a hipótese inicial de que algoritmos de GER que levam em conta a variação humana podem gerar expressões de referência mais próximas a descrições de seres humanos do que algoritmos que não levam esta questão em conta. Além disso, confirmou-se que algoritmos de GER baseados em técnicas de aprendizado de máquina mostram-se superiores a algoritmos de GER consagrados e amplamente utilizados na literatura, como o algoritmo Incremental. / This work concerns a MSc Project in the field of Natural Language Generation (NLG), focusing on the issue of human variation in the Referring Expression Generation task (REG). The study presents a literature review on the topic, the proposal of two REG algorithms and the construction of a new corpus of referring expressions. Based on these algorithms, two REG models are implemented: with and without taking human variation. These models are employed in a series of REG experiments using seven referring expression corpora. Results confirm the initial hypothesis that REG algorithms that take speaker variation into account outperform existing algorithms that generate speaker-independent descriptions. Moreover, the present study confirms that algorithms based on machine learning techniques overperform existing algorithms, as the Dale and Reiter\'s Incremental algorithm.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-04112014-214145
Date19 September 2014
CreatorsThiago Castro Ferreira
ContributorsIvandré Paraboni, Thiago Alexandre Salgueiro Pardo, Sarajane Marques Peres
PublisherUniversidade de São Paulo, Sistemas de Informação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0061 seconds