Return to search

Radiation-induced deregulation of PiRNA pathway proteins : a possible molecular mechanism underlying transgenerational epigenomic instability

PiRNAs and their Piwi family protein partners are part of a germline specific epigenetic regulatory mechanism essential for proper spermatogenesis, silencing of transposable elements, and maintaining germline genome integrity, yet their role in the response of the male germline to genotoxic stress is unknown.
Ionizing radiation (IR) is known to cause transgenerational genome instability that is linked to carcinogenesis. Although the molecular etiology of IR-induced transgenerational genomic instability is not fully understood, it is believed to be an epigenetically mediated phenomenon. IR-induced alterations in the expression pattern of key regulatory proteins involved in the piRNA pathway essential for paternal germline genome stability may be directly involved in producing epigenetic alterations that can impact future generations.
Here we show whole body and localized X-irradiation leads to significant altered expression of proteins that are necessary for, and intimately involved in, the proper functioning of the germline specific piRNA pathway in mice and rats. In addition we found that IR-induced alterations to piRNA pathway protein levels were time and dose dependent. / ix, 123 leaves : ill. (some col.) ; 29 cm

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/2617
Date January 2011
CreatorsMerrifield, Matthew, University of Lethbridge. Faculty of Arts and Science
ContributorsKovalchuk, Olga
PublisherLethbridge, Alta. : University of Lethbridge, Dept. of Biological Science, c2011, Arts and Science, Department of Biological Sciences
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationThesis (University of Lethbridge. Faculty of Arts and Science)

Page generated in 0.0023 seconds