Obesity is associated with deficits in cognitive function, particularly within the domain of executive function (EF). EF refers to higher order cognitive processes that regulate our ability to sustain attention, inhibit subconscious tendencies, remember and manipulate information for immediate use, and remain cognitively flexible. Deficits in EF in overweight and obese individuals may impact the success of weight loss and maintenance efforts. Therefore, understanding the biological links between obesity and EF, as well as the ability to reverse EF deficits with weight loss, is imperative. The first study aimed to determine the effect of weight loss in overweight and obese, middle-aged and older adults on serum brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Serum samples (n=21; 50-75 years, BMI 25-40 kg/m2) were pooled from two prior weight loss studies. Fasting blood measurements were taken before and after 8- or 12-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d). Body Mass Index (BMI), body weight, waist circumference, and percent body fat (All p<0.001) decreased with weight loss. Serum BDNF (p=0.871), S100B (p=0.898), and GFAP (p=0.506) did not change following weight loss. The second study aimed to determine the correlation between the magnitude of change in serum BDNF, S100B, and GFAP and the magnitude of improvement in EF performance on three computer-based tests. Participants (n=8; 50-75 years, BMI 25-40 kg/m2) completed 4-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d), followed by 4-weeks of weight maintenance (hypocaloric diet + steps/d goal). Fasting blood and EF measurements were completed at baseline, and weeks 4 and 8. BMI (p=0.001), body weight (p=0.001), waist circumference (p=0.002), and percent body fat (p=0.001) decreased from baseline to week 8. Serum BDNF (p=0.359), S100B (p=0.277), and GFAP (p=0.585) did not change following weight loss. Go/No-Go (GNG) errors of commission (p=0.009) and AX-Continuous Performance Test (AX-CPT) correct response time (p=0.041) decreased following the weight loss. The change in serum GFAP was inversely correlated with GNG errors of omission (r=-0.716, p=0.046) and AX-CPT correct hits (r=-0.737, p=0.037), and positively correlated with AX-CPT correct response time (r=0.859, p=0.006). In conclusion, although weight loss does not influence serum BDNF, S100B, or GFAP levels, it may have a positive effect on inhibitory control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between serum BDNF, S100B, and GFAP and executive function. / Master of Science / Obesity is associated with lower brain function, particularly in executive function (EF). EF refers to advanced thought processes that help to maintain focus, practice self-control, solve problems, and easily switch between tasks. Lower EF in individuals with overweight and obesity may impact the success of weight loss and maintenance efforts. Because of this, understanding body processes that may link obesity and lower EF, as well as the ability to improve EF with weight loss, is very important. The first study aimed to determine the effect of weight loss on blood proteins responsible for brain health: brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Twenty-one blood samples from overweight and obese, middle-aged and older adults were combined from two completed weight loss studies. In these studies, blood was measured before and after 8- or 12-weeks of a weight loss (low calorie diet;1200 or 1500 Calories per day). Body Mass Index (BMI), body weight, waist circumference, and percent body fat all decreased with weight loss; however, levels of BDNF, S100B, and GFAP in the blood did not change. The second study aimed to determine the relationship between blood BDNF, S100B, and GFAP and performance on three computer-based tests of EF before and after weight loss. Eight overweight and obese, middle-aged and older adults completed 4-weeks of weight loss (low-calorie diet; 1200 or 1500 Calories per day), followed by 4-weeks of weight maintenance. BMI, body weight, waist circumference, and percent body fat all decreased following the weight loss and maintenance intervention (week 8). Blood BDNF, S100B, and GFAP levels did not change, but performance on two EF measures improved: participants made less errors of commission (doing something when not supposed to) and had faster reaction time following the intervention, indicating better self-control. Additionally, greater increases in GFAP were associated with less errors of omission (not doing something when supposed to), fewer correct responses, and slower reaction time. In conclusion, although weight loss did not affect blood BDNF, S100B, or GFAP levels, it may improve self-control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between weight loss, blood proteins of brain health, and EF.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/106747 |
Date | 04 June 2020 |
Creators | Herra, Lindsay Marie |
Contributors | Human Nutrition, Foods and Exercise, Davy, Kevin P., Davy, Brenda M., Katz, Benjamin D., Zabinsky, Jennifer S. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds