Return to search

The Infection and Uncoating Mechanism of the Giant Melbournevirus

Since their 'discovery' at the turn of the 21st century, giant viruses of the amoeba have captured the fascination of virologists. They have raised a plethora of questions regarding their evolution and ecological significance and have greatly defied a century's old definition of viruses. By now, it is understood that a handful of giant viruses enter the amoeba via the phagosomal pathway. This thesis chooses to focus on the giant Melbournevirus (MelV) regarding its entry and uncoating pathway. We now conclude that the initial attachment between MelV and amoeba cells is built upon glycan interactions based on evidence that mannose competitively inhibits MelV binding. This attachment likely entails an approximately 70 kDa mannose containing glycoprotein on the MelV. Mannose and other glycans induce secretion of proteins including phagosomal enzymes from amoeba. Based on these findings, it is hypothesised that the mannose-induced phagosomal enzymes could play a role in the uncoating of the MelV. The results further reveal isolated phagosomes, also to some extent the glycan-induced protein secretions, to have high levels of proteins involved in cell redox homeostasis. This implies that the highly oxidative environment of the phagosome may be an overlooked physiological factor when regarding the uncoating of the MelV. A deeper understanding of the physiological uncoating conditions can be used for studying internal structures of giant viruses, such as the enigmatic Large and Dense Body (LDB) of the MelV particle.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-428745
Date January 2020
CreatorsShammakhi, Sahar
PublisherUppsala universitet, Institutionen för biologisk grundutbildning
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds