Return to search

Glacial lakes in the Torneträsk region, northern Sweden, are key to understanding regional deglaciation patterns and dynamics

The prospect of sea level rise due to melting ice sheets affirms the urgency of gaining knowledge on ice sheet dynamics during deglaciation. The Fennoscandian Ice Sheet serves as an analogue, whose retreat can be reconstructed from the geomorphological record. The recent development of a high-resolution LiDAR-derived elevation model can reveal new relationships between landforms, even for well-studied areas such as the Torneträsk region in northwestern Sweden. Therefore, this study aims to refine the reconstruction of the deglaciation in this region based on an updated glacial geomorphological map. A range of glacial landforms were mapped, which by means of an inversion model were utilized to form swarms representing spatially and temporally coherent ice sheet flow systems. Additionally, glacial lake traces allowed for the identification of ice margins that dammed lakes in Torneträsk, Rautasjaure, and other (former) lake basins. Eight glacial lake stages were identified for the Torneträsk basin, where final drainage occurred through Tornedalen. Over 20 glacial lake stages were identified for the Rautasjaure basin, where drainage occurred along the margins of a thinning ice lobe. The disparity between the glacial lake systems results from different damming mechanisms in relation to the contrasting topography of the basins. A strong topographic control on the retreat pattern is evident, as the ice sheet retreated southward in an orderly fashion in the premontane region, but disintegrated into ice lobes in the montane region. The temporal resolution of current dating techniques is insufficient to constrain the timing of ice retreat at the spatial scale of this study. Precise dating of the Pärvie fault would pinpoint the age of the ice margin which at the time of rupture was located between two glacial lake stages of Torneträsk. Collectively, this study provides data for better understanding the final retreat of the ice sheet and associated processes, such as interactions between glacial lakes and ice dynamics.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:polar-8906
Date January 2022
CreatorsPloeg, Karlijn
PublisherStockholms universitet, Institutionen för naturgeografi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds