Return to search

Origin, Sedimentological Characteristics, and Paleoglacial Significance of Large Latero-Frontal Moraines in Deglaciating Regions of Perú and Iceland

This thesis investigates the origin, sedimentological characteristics, and paleoglacial significance of large latero-frontal moraines and moraine-dammed glacial lakes and their potential to generate glacial lake outburst flood (GLOF) events in the Cordillera Blanca, Perú and Iceland. This topic is particularly important as the potential for GLOF events in high altitude regions is increasing as ongoing global climate warming causes rapid glacier recession and the growth of lakes impounded by unstable moraines.
The first chapter of this thesis introduces the characteristics of moraine dammed lakes and GLOFs and provides details of the study areas in Perú and Iceland that were selected for this work (Chapter 1). Chapter 2 investigates the glacial history of the Cordillera Blanca, Perú through the compilation, mapping, and analysis of dated moraines in the region. The formation of moraines by different glaciers in the same region at approximately the same time is interpreted to indicate a period of regional climate conditions that were favourable for glacier expansion and/or equilibrium. Six stages of glacial activity are identified from this analysis, ranging in age from older than 35 thousand years (Stage 1) to modern (Stage 6).
The third chapter of this thesis identifies the geomorphic and sedimentologic characteristics of a moraine-dammed supraglacial lake (Llaca Lake) in the Cordillera Blanca, Perú. The combined use of imagery collected with an uncrewed-aerial vehicle (UAV), field sedimentological observations and geomorphological mapping allowed the creation of a landsystem model that summarizes the current geomorphic and sedimentologic environment of Llaca Lake (Chapter 3). This is the first study to describe the landform-sediment assemblages in a tropical moraine-dammed supraglacial lake and provides a framework for further landsystem analysis of growing supraglacial lakes that are at risk of GLOF events.
The fourth chapter of this thesis describes the sedimentary architecture of the eastern lateral moraine of Gígjökull in southern Iceland. An uncrewed-aerial vehicle was used to acquire high resolution photographs of an exposure through the lateral moraine that allowed the identification of seven lithofacies types and three lithofacies associations. Documentation of the sedimentary architecture of the eastern lateral moraine of Gígjökull enhances understanding of moraine development and the identification of areas of hydrogeological weakness that can reduce the structural integrity of the moraine.
The research findings presented in this thesis utilize a glacial sedimentological and geomorphological approach to investigating the relationship between current and past glacial processes in the study areas, and the role that these processes play in determining the characteristics and stability of large ice marginal moraines that impound glacial lakes. This work also furthers our understanding of the dynamic surface processes at work in high altitude regions such as the Cordillera Blanca. Identifying and determining the relationships between current and past processes, sediments and landforms will enhance understanding of the role of large moraines damming glacial lakes in other high-altitude regions such as the Himalayas, British Columbia, Patagonia, and New Zealand and the associated risk of GLOF events. / Thesis / Doctor of Science (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26976
Date January 2021
CreatorsNarro Pérez, Rodrigo Alberto
ContributorsEyles, Carolyn H., Earth and Environmental Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.003 seconds