Les besoins actuels des systèmes de télécommunications et des capteurs optiques poussent à réaliser des circuits intégrés optiques présentant toujours plus de fonctions sur un même substrat. Atteindre un tel niveau d'intégration est difficile, car les matériaux et les procédés technologiques employés pour implémenter les différentes fonctions optiques ne sont pas toujours compatibles entre eux. Cette thèse s'inscrit dans la problématique de l'intégration des fonctions optiques actives (émission, amplification) et passives (multiplexage, filtrage, etc.) sur substrat passif et reporte la réalisation d'un laser DFB hybride tridimensionnel par échange d'ions sur verre passif et report de plaque d'un verre actif codopé Er3+:Yb3+. Ce laser est constitué d'un guide canal de Bragg, sélectivement enterré dans le substrat passif, et chargé par un guide plan, réalisé dans le verre actif (dopé avec une concentration massique de 2,3% en Er2O3 et 3,6% en Yb2O3). Il est caractérisé par une émission monomode de (420±15) µW à 1534 nm, pour (390±20) mW de puissance de pompe injectée. Ce dispositif ouvre ainsi la voie vers l'intégration de fonctions actives, localisées à la surface du substrat passif, avec des fonctions passives, réalisées en exploitant le volume et la surface du même substrat. / The current needs of optical telecommunications and sensors require developing integrated optical circuits providing different and heterogeneous functions on the same substrate. The main issue is the incompatibility between the manufacturing processes of these optical functions. This work deals with the integration of active (emission, amplification) and passive (multiplexing, filtering, etc.) functions on a passive glass substrate. Its aim is to develop a DFB three-dimensional hybrid laser by ion-exchange in passive glass. This laser is made of a Bragg channel waveguide, selectively buried in the passive glass substrate, loaded by a plane waveguide, defined at the surface of an Er3+:Yb3+ codoped active glass wafer. It emits a (420±15) µW laser signal at 1534 nm for (390±20) mW injected pump power. Hence this device opens the way towards the integration of active functions, located at the surface of the passive glass substrate, with passive ones, spreading at its surface and in its volume.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENT011 |
Date | 08 April 2014 |
Creators | Casale, Marco |
Contributors | Grenoble, Broquin, Jean-Emmanuel, Bucci, Davide |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds