Glioblastoma (GBM) sind bösartige hirneigene Tumore, deren schlechte Prognose einer innovativen Therapie bedarf. Aus diesem Grund wurde ein neuer Therapieansatz entwickelt, der auf einer lokalen Ultraschall-vermittelten Zytostatika Applikation beruht. Hierfür wurden stabile Microbubbles (MB) bestehend aus Phospholipiden synthetisiert. Es konnte gezeigt werden, dass MB als auch fokussierter Ultraschall niedriger Intensität (LIFU) keinen negativen Einfluss auf GBM-Zellen hat. MB hingegen konnten mittels LIFU destruiert werden, wodurch das in den MB eingeschlossene Chemotherapeutikum freigesetzt werden kann. Es wurden verschiedene Platin(II)- und Palladium(II)-Komplexe auf GBM Zellen getestet. Zur Beladung der MB wurde Doxorubicin (Dox) verwendet. Es konnte eine Beladungseffizienz der MB mit Dox von 52 % erreicht werden, auch eine Aufreinigung dieser mittel Ionenaustausch-Chromatographie und Dialyse war erfolgreich. Die Austestung der mit Dox beladenen MB (MBDox) erfolgte auf GBM-Zellen in 2D- und 3D-Zelkulturmodellen. Dabei zeigte sich, dass die Behandlung mit MBDox und LIFU für 48 h eine zytotoxische Wirkung hatte, die sich signifikant von der Behandlung mit MBDox ohne LIFU unterschied. Zur Austestung der MBDox in 3D-Zellkulturmodellen wurden zwei Scaffold-Systeme eingesetzt. Es zeigte sich in den Versuchen, dass MBDox mit LIFU im Vergleich zu MBDox ohne LIFU Applikation einen zytotoxischen Effekt auf GBM-Zellen haben. Somit konnte die Wirksamkeit der Zytostatika Applikation mittels MB und LIFU in 2D- und 3D-Zellkulturmodellen erfolgreich etabliert werden. Als weiterer Schritt wurden zwei 3D in vitro Modelle erarbeitet. Dabei wurden zunächst organotypische hippocampale Slice Kulturen (organotypic hippocampal brain slice cultures, OHSC) aus der Maus hergestellt und anschließend mit fluoreszent-markierten Mikrotumoren aus GBM-Zelllinien, Primärzellen (PZ) und aus Patienten generierten GBM-Organoiden hergestellt. Diese GBM-Modelle wurden mit Tumor Treating Fields (TTFields) behandelt. Dabei war eine Abnahme der Tumorgröße von Mikrotumoren aus GBM-Zellen und PZ unter TTFields-Behandlung für 72 h messbar. Als weiteres in vitro Modell wurden humane Tumorschnitte aus intraoperativ entferntem GBM-Patientenmaterial hergestellt. Die Schnitte wiesen ein heterogenes Ansprechen nach 72 h TTFields-Applikation auf. Dies spiegelt die Heterogenität des GBM sehr gut wider und bestärkt die Eignung des Modelles zur Untersuchung von neuen Therapieansätzen zur Behandlung von GBM. / Glioblastoma (GBM) are malignant brain tumor with a poor prognosis requiring innovative therapy. For this reason, a new therapeutic approach based on local ultrasound-mediated cytostatic application is now being established. For this purpose, stable microbubbles (MB) consisting of phospholipids were synthesized. It could be shown that MB as well as focused low intensity ultrasound (LIFU) had no negative effect on GBM cells. MB, on the other hand, could be destroyed by LIFU, allowing the release of the chemotherapeutic agent entrapped in MB. Different platinum(II) and palladium(II) complexes were tested on GBM cells. Doxorubicin (Dox) was used to load the MB. Loading efficiency of MB with Dox of 52% was achieved, and purification of these by ion-exchange chromatography and dialysis was also successful. Dox-loaded MB (MBDox) was tested on GBM cells in 2D and 3D cell culture models. This showed that treatment with MBDox and LIFU for 48 h had a cytotoxic effect that was significantly different from treatment with MBDox without LIFU. Two scaffold systems were used to test MBDox in 3D cell culture models. It was shown in the experiments that MBDox with LIFU had a cytotoxic effect on GBM cells compared with MBDox without LIFU application. Thus, the efficacy of cytostatic drug application using MB and LIFU was successfully established in 2D and 3D cell culture models. As a further step, two 3D in vitro models were developed. Here, organotypic hippocampal brain slice cultures (OHSC) were first prepared from mice and then with fluorescent-labeled microtumors from GBM cell lines, primary cells (PZ), and GBM organoids generated from patients. These GBM models were treated with tumor treating fields (TTFields). Thereby, a decrease in tumor size of microtumors derived from GBM cells and PZ was measurable under TTFields treatment for 72 h. As another in vitro model, human tumor sections were prepared from intraoperatively removed GBM patient material. The sections showed heterogeneous responses after 72 h of TTFields application. This reflects the heterogeneity of GBM very well and reinforces the suitability of the model to investigate new therapeutic approaches for the treatment of GBM.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:32016 |
Date | January 2023 |
Creators | Schulz, Ellina |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://opus.bibliothek.uni-wuerzburg.de/doku/lic_ohne_pod.php, info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds