Return to search

Propriedades globais de uma classe de complexos diferenciais / Global properties of a class of differential complexes

Considere a variedade Tn x S1 com coordenadas (t;x) e considere uma 1-forma diferencial fechada e real a(t) em Tn. Neste trabalho consideramos o operador Lpa = dt +a(t) Λ ∂x de D\'p em D\'p+1, onde D\'p é o espaço das p-correntes da forma u = ∑ Ι I Ι = puI (t, x)dtI. O operador acima define um complexo de cocadeia formado pelos espaços vetoriais D\'p e pelos homomorfismos lineares Lpa : D\'p → D\'p+1. Definiremos o que significa resolubilidade global no complexo acima e caracterizaremos para quais 1-formas a o complexo é globalmente resolúvel. Faremos o mesmo com respeito a hipoeliticidade global no primeiro nível do complexo. / Consider the manifold Tn x S1 with coordinates (t;x) and let a(t) be a real and closed differential 1-form on Tn. In this work we consider the operator Lpsub>a = dt +a(t) Λ ∂x de D\'p from D\'p to D\'p+1, where D\'p is the space of all p-currents u = ∑ Ι I Ι = puI (t, x)dtI . The above operator defines a cochain complex consisting of the vector spaces D\'p and of the linear maps Lpa : D\'p → D\'p+1. We define what global solvability means for the above complex and characterize for which 1-forms a the complex is globally solvable. We will do the same with respect to global hypoellipticity on the first level of the complex.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25102018-112308
Date23 March 2018
CreatorsHugo Cattarucci Botós
ContributorsSergio Luis Zani, Adalberto Panobianco Bergamasco, Cléber de Medeira, José Ruidival Soares dos Santos Filho
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds