Return to search

Rôle du microARN miR-124 dans la plasticité homéostatique via le contrôle de l’expression de la synaptopodine et des récepteurs AMPA dans les neurones de l'hippocampe / Role of the microRNA miR-124 in the expression of homeostatic synaptic plasticity by controling the level of synaptopodin and AMPA receptors in hippocampal neurons

Le synaptic scaling est une forme de plasticité homéostatique par lequel les synapses ajustent leur efficacité pour compenser des variations normales ou pathologiques de l'activité neuronale notamment lors des maladies neurodégeneratives ou suite à la perte d’afférences sensorielles après une lésion. Dans un modèle expérimental classique, le traitement chronique des neurones primaires avec la tétrodotoxine (TTX) pour bloquer la propagation des potentiels d'action présynaptiques induit une augmentation significative de l'amplitude des courants miniatures excitateurs transmis par les récepteurs du glutamate AMPA postsynaptiques. Plusieurs voies de signalisation ont été proposées, dont celle impliquant les microARNs (miRs), de petits ARN non-codants qui inhibent la traduction des protéines en se liant aux ARN messagers cibles. Dans ce contexte, nous avons exploré l'hypothèse que le microARN, miR-124, fortement exprimé dans le cerveau, pourrait être un régulateur important de l'homéostasie synaptique en contrôlant l'expression de la protéine synaptopodine, une protéine structurante des épines dendritiques et indispensable à l'expression du synaptic scaling.En combinant des approches de RTq-PCR, d'immunocytochimie et d'électrophysiologie in vitro, nous avons montré dans un premier temps que la privation globale de l'activité des neurones primaires d’hippocampe diminuait le niveau d'expression de miR-124 et augmentait celui de la synaptopodine et des récepteurs AMPA dont la sous-unité GluA2 est une autre cible de miR-124. Par ailleurs, en rendant des synapses individuelles inactives via l’expression présynaptique de la toxine tétanique, nous avons observé que le recrutement synaptique des récepteurs AMPA et de la synaptopodine était spécifique de ces synapses, suggérant une régulation homéostatique locale. Dans un deuxième temps, nous avons trouvé que la surexpression de miR-124 ou l’inhibition de son interaction avec l’ARNm de la synaptopodine ou de GluA2 bloquaient la réponse synaptique homéostatique induite par le traitement TTX. Enfin, des expériences de FRAP ont suggéré que la synaptopodine influençait le trafic des récepteurs AMPA à la membrane probablement en les stabilisant à la synapse, ce qui expliquerait ainsi son rôle pendant la plasticité homéostatique. / Synaptic scaling is a form of homeostatic plasticity where synapses adjust their own efficacy to compensate for normal or pathological variations in neuronal activity such as neurodegenerative disorders or sensory deprivation after a lesion. In a well-established paradigm, the chronic application of tetrodotoxin (TTX) in primary neurons, to block presynaptic action potential propagation, induces a significant upscaling of miniature excitatory postsynaptic currents mediated-AMPA receptors. Numerous regulators of this plasticity have been identified including microRNAs (miR), which are small endogenous non-coding RNAs, inhibiting protein translation by binding to mRNA targets. This led us to hypothesize that the most highly expressed microRNA in the brain, miR-124, could be an important regulator of homeostatic scaling by controlling the expression of synaptopodin, a structural protein of dendritic spines playing a crucial role in homeostatic plasticity.By combining qRT-PCR, immunocytochemistry and in vitro electrophysiology approaches, first we showed that a global 48hrs TTX treatment in hippocampal primary neurons led to a decrease in miR-124 level and an increase in the expression of synaptopodin and synaptic AMPA receptors containing the GluA2 subunit which is another miR-124 target. Moreover, we observed that the synaptic accumulation of AMPA receptors and synaptopodin could be synapse-specific by expressing the tetanus toxin to block the activity of individual presynapses, which suggested a local homeostatic regulation. Importantly, we found that overexpressing miR-124 or inhibiting its interaction with synaptopodin or GluA2 mRNAs blocked the synaptic homeostatic response. In addition, FRAP experiments suggested that synaptopodin controlled AMPA receptor trafficking at the membrane by probably retaining them in dendritic spines, which could explain its role during homeostatic plasticity.

Identiferoai:union.ndltd.org:theses.fr/2019BORD0104
Date24 June 2019
CreatorsDubes, Sandra
ContributorsBordeaux, Letellier, Mathieu
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds