Atherosclerotic and restenotic lesions develop as a result of an excess inflammatory response to vascular injury. Glucocorticoid hormones have widely-recognised anti-inflammatory and anti-proliferative properties which appear to make them ideal candidates for inhibition of vascular lesion development. Indeed, administration of glucocorticoids to experimental animals does inhibit the growth of vascular lesions in some models. In addition, glucocorticoids are currently being trialled clinically as anti-restenotic agents. However, glucocorticoid excess in patients, either as a result of Cushing’s syndrome or chronic steroid therapy, is associated with enhanced CVD risk. Therefore, the effects of glucocorticoids on vascular lesion development remain imperfectly understood. The overall objective of these studies was to explore the influence of endogenous and exogenous glucocorticoids on vascular lesion development using murine models of atherosclerosis (ApoE-/- mice fed a “western” diet) and neointimal hyperplasia (wireinduced femoral artery injury). The work described in this thesis addresses the hypothesis that glucocorticoids are pro-atherogenic, yet anti-restenotic. Mice were bilaterally adrenalectomised to investigate the role of endogenous glucocorticoids on vascular lesion development. Removal of the adrenal glands had no influence on atherogenesis or neointima development. The influence of exogenous glucocorticoids on lesion development was assessed by orally administering dexamethasone (0.1 or 0.8mg/kg/day). Atherosclerotic lesion burden was augmented by dexamethasone administration. Conversely, fibro-proliferative neointimal proliferation was inhibited by dexamethasone. However, this effect was obscured by thrombotic lesion development. It was proposed that this thrombotic effect is attributable to increased plasminogen activator inhibitor-1 (PAI-1), which was tested using PAI-1 deficient mice. Although PAI-1 was found to mediate the systemic pro-thrombotic effect of dexamethasone, it is not required for the enhanced development of thrombotic lesions at the site of intra-luminal injury. These results suggest that physiological levels of endogenous glucocorticoids play a limited role in vascular lesion development. Conversely, although exogenous glucocorticoids inhibit fibro-proliferative intimal hyperplasia, they appear to have significant detrimental influences on lesion development, augmenting atherosclerosis and inducing thrombotic neointimal lesion formation following vascular injury. Further research is therefore required to improve the cardiovascular outcome of patients requiring glucocorticoid therapy and for the use of glucocorticoids as antirestenotic agents.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563223 |
Date | January 2011 |
Creators | Low, Lucinda |
Contributors | Hadoke, Patrick. ; Walker, Brian. ; Seckl, Jonathan |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/5920 |
Page generated in 0.0021 seconds