Les enregistrements életrophysiologiques ont apporté des informations considérables sur le fonctionnement et le dysfonctionnement du cerveau. Améliorer les dispositifs d'enregistrement permettrait d'approfondir les connaissances au niveau de la science fondamentale et serait bénéfique pour les patients. Les principales limitations des électrodes en contact direct avec le cerveau comprennent leur invasivité, leur biocompatibilité et leur SNR. Il serait aussi souhaitable de mesurer simultanément les signaux électriques et moléculaires. Le couplage entre l'activité électrique et métabolic est encore mal comprise. Le but de ce travail était de fournir des solutions technologiques à ces défis dans le contexte de l’épilepsie.Nous avons développé des grilles flexibles de 4 µm d’épaisseur résolvant les problèmes d’invasivité, de rigidité et de biocompatibilité. Afin d’améliorer le SNR, des sites d'enregistrement en polymère hautement conducteur PEDOT: PSS ont été faits. La qualité des signaux enregistrés in vivo était meilleure que celui obtenu avec de l’or. Puis nous avons validé des sites d'enregistrement en transistors électrochimiques organiques, permettant l'amplification locale des signaux. Les grilles ont été testées in vivo et le SNR a été multiplié par 10. Enfin, nous avons fonctionnalisé les sites avec une enzyme pour mesurer le glucose. Par rapport aux dispositifs classiques, le capteur de glucose a montré une stabilité et une sensibilité inégalée in vitro.En conclusion, l'électronique organique semble être une solution technologique prometteuse pour les limitations des systèmes actuels visant à enregistrer l'activité électrique et moléculaire du cerveau. / Electrophysiological recordings brought considerable information about brain function and dysfunction. Improving recording devices would further our understanding at the basic science level and would be beneficial to patients. Major limitations of current electrodes that are in direct contact with brain tissue include their invasiveness, their poor biocompatibility, their rigidity and a suboptimal signal-to-noise ratio. In addition, it would be desirable to measure simultaneously molecular signals. The coupling between the electrical activity of neurons and metabolism is still poorly understood in vivo. The goal of this work was to provide technological solutions to such challenges in the context of epilepsy. We generate 4 µm thick, totally flexible but resilient grids, thus solving the challenge of invasiveness, rigidity and biocompatibility. In order to improve the signal-to-noise ratio, recording sites were made of the highly conductive polymer PEDOT:PSS. The quality of the in vivo signals recorded was better than that obtained with conventional gold contacts. Going a step further, we made the recording site as an organic electrochemical transistor, which enables local amplification of signals. The grid was tested in vivo and the SNR was increased by a factor of 10. Finally, we functionalized PEDOT:PSS sites with glucose oxidase to measure glucose. Compared to conventional devices, the glucose sensor showed unsurpassed stability and sensitivity in vitro. In conclusion, organic electronics appears to be a promising technological solution to the limitations of current systems designed to record the electrical and molecular activity of the brain.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM5076 |
Date | 11 December 2013 |
Creators | Doublet, Thomas |
Contributors | Aix-Marseille, Malliaras, Georges, Bernard, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds