Obesity is a major health problem in the Western world. Mean birth weight has increased during the last 25 years. One explanation is that the proportion of large for gestational age (LGA) infants has increased. Such infants risk developing obesity, cardiovascular disease and diabetes later in life. Despite the risk of neonatal hypoglycemia, their postnatal metabolic adaptation has not been investigated. Our data, obtained with stable isotope labeled compounds, demonstrate that newborn LGA infants have increased lipolysis and decreased insulin sensitivity. After administration of glucagon, the plasma levels of glucose and the rate of glucose production increased. The simultaneous increase in insulin correlated with the decrease in lipolysis, indicating an antilipolytic effect of insulin in these infants. We also demonstrated an intergenerational effect of being born LGA, since women born LGA, were at higher risk of giving birth to LGA infants than women not born LGA. Further, the LGA infants formed three subgroups: born long only, born heavy only, and born both long and heavy. Infants born LGA of women with high birth weight or adult obesity were at higher risk of being LGA concerning weight alone, predisposing to overweight and obesity at childbearing age. In addition we found that pregnant women with gestational diabetes were at increased risk of giving birth to infants that were heavy alone. This could explain the risk of both perinatal complications and later metabolic disease in infants of this group of women. To identify determinants of fetal growth, 20 pregnant women with a wide range of fetal weights were investigated at 36 weeks of gestation. Maternal fat mass was strongly associated with insulin resistance. Insulin resistance was related to glucose production, which correlated positively with fetal size. The variation in resting energy expenditure, which was closely related to fetal weight, was largely explained by BMI, insulin resistance, and glucose production. Lipolysis was not rate limiting for fetal growth in this group of women. Consequently, high maternal glucose production due to a high fat mass may result in excessive fetal growth.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-9135 |
Date | January 2008 |
Creators | Ahlsson, Fredrik |
Publisher | Uppsala universitet, Institutionen för kvinnors och barns hälsa, Uppsala : Universitetsbiblioteket |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 363 |
Page generated in 0.0021 seconds