Return to search

Die Bedeutung des Glukosestoffwechsels beim Priming humaner, antigenspezifischer CD8\(^+\) T-Zellen / The importance of glucose metabolism in priming of human, antigen-specific CD8\(^+\) T cells

In der Immunantwort sind CD8+ T-Zellen von entscheidender Bedeutung für die spezifische zelluläre Abwehr von intrazellulären Erregern oder Neoplasien. Erst in den vergangenen Jahren konnten CD8+ T-Zellen im Rahmen der adoptiven Immuntherapie oder als CAR-T-Zellen, therapeutisch genutzt werden, wodurch sich für bestimmte hämatologische Erkrankungen komplett neue Therapiemöglichkeiten ergaben. Ein entscheidender Faktor für den Erfolg dieser Therapien ist, dass CD8+ T-Zellen während der ex-vivo Expansion keine terminale Differenzierung durchlaufen, sondern den Phänotyp von gering differenzierten T-memory-Zellen behalten. In den letzten 20 Jahren hat sich das Wissen über den dynamischen Stoffwechsel von CD8+ T-Zellen enorm erweitert. Es wurde deutlich, dass einerseits der Aktivierungszustand und äußere Einflüsse wie Zytokine, Mikromilieu und Nährstoffangebot den Stoffwechsel der Zelle steuern, andererseits der Stoffwechsel der Zelle selbst ihre Differenzierung und Funktion beeinflusst.
Im Mausmodell konnte durch die Zugabe des Glykolyseinhibitors 2-DG während der ex-vivo Expansion ein positiver Einfluss auf die Differenzierung von CD8+ T-Zellen erreicht werden. Die mit 2-DG kultivierten Zellen zeigten einen gering differenzierten T-memory-Phänotyp, der nach Transfer zu einer verstärkten Re-Expansion und verbesserter anti-Tumor-Aktivität führte. In der hier vorliegenden Arbeit wird dieser Ansatz bei humanen CD8+ T-Zellen überprüft und auf ein antigenspezifisches Modell des Primings und der Expansion übertragen.
Im ersten Teil der Arbeit wurden humane, naive CD8+ T-Zellen mit unterschiedlichen Konzentrationen von 2-DG unspezifisch aktiviert und expandiert. Es zeigte sich ein dosisabhängiger Effekt der Blockade des Glukosestoffwechsels auf den Metabolismus, die Aktivierung, Differenzierung und Proliferation der Zellen. Die publizierten, an Mauszellen gewonnenen Erkenntnisse zur Wirkung von 2-DG konnten, mit geringen quantitativen Unterschieden, insgesamt bestätigt werden.
Im zweiten Schritt wurde der Ansatz auf ein Modell des antigenspezifischen Primings und der Expansion von CD8+ T-Zellen durch peptid-beladene dendritische Zellen übertragen. Im Unterschied zur unspezifischen Expansion führte bereits eine geringe Blockade der Glukosenutzung, in der frühen Expansionshase bis zu 4 Tage nach dem Priming, zu einer ausgeprägten Hemmung der antigenspezifischen Expansion. Die Hauptursache hierfür ist die um ein Vielfaches stärkere Proliferation bei der antigenspezifischen Expansion. Diese ist, aufgrund der geringen Frequenz antigenspezifischer Zellen in der Ausgangspopulation naiver CD8+ T-Zellen, erforderlich und entspricht in ihrem Ausmaß eher der antigenspezifischen Proliferation in-vivo. Darüber hinaus wurde gezeigt, dass die antigenspezifische Proliferation vor allem in der frühen Expansionsphase und weniger während des Primings oder der späten Expansion stark auf die Glukosenutzung angewiesen ist. Auch eine nur vorübergehende Einschränkung der Glukosenutzung in diesem Zeitraum führte zu einer anhaltenden Verminderung der Proliferation.
Der Zusatz von 2-DG resultierte zwar in einem höheren Anteil von CD8+ T-Zellen mit einem gering differenzierten Phänotyp, jedoch war ihre absolute Anzahl geringer. Es zeigte sich, dass antigenspezifische Proliferation und Differenzierung in den durchgeführten Versuchen gekoppelt waren. Durch eine Blockade des Glukosestoffwechsels mit 2-DG konnte diese Koppelung nicht aufgehoben werden. Eine wahrscheinliche mechanistische Erklärung hierfür, die jedoch für die antigenspezifische Expansion von CD8+ T-Zellen noch experimentell bestätigt werden müsste, ergibt sich aus dem zellulären Regelkreis von AMPK und mTOR. Dieser integriert in CD8+ T-Zellen die metabolische Situation der Zelle auf der einen Seite und Stimuli zur Zellteilung und -differenzierung auf der anderen Seite.
Die genannten Ergebnisse führten zu der Schlussfolgerung, dass bei der Kultivierung von antigenspezifischen CD8+ T-Zellen für die Immuntherapie der Zusatz von 2-DG keine Verbesserung darstellt. Die vorliegende Arbeit unterstreicht auch, dass Erkenntnisse aus Versuchen mit unspezifisch stimulierten T-Zellen sich nicht ohne Weiteres auf Modelle der antigenspezifischen Expansion oder die Immunantwort in- vivo übertragen lassen.
In einem klinischen Nebenprojekt konnte gezeigt werden, dass bei einem Patienten mit Multiplem Myelom unter Therapie mit einem bi-spezifischen, T-Zell rekrutierenden Antikörper gegen BCMA bei Progress der Erkrankung ein homozygoter Verlust des kodierenden Gens aufgetreten war. Damit wurde erstmals für diese Therapie eine homozygote Deletion mit nachfolgendem Verlust der Zielstruktur des Antikörpers als Resistenzmechanismus beschrieben. Weiterhin konnte gezeigt werden, dass auch bei Patient:innen mit Multiplem Myelom, die noch keine T-Zell basierte Immuntherapie erhalten haben, häufig heterozygote Veränderungen in Genen vorliegen, die für Zielantigene von Immuntherapien kodieren. Dies macht den Verlust beider Allele wahrscheinlicher und kann somit eine Prädisposition für die Entwicklung einer Therapieresistenz darstellen. / Within the immune response CD8+ T cells are crucial for the specific cellular defence against intracellular pathogens or cancer. But only in the last years, they could be used therapeutically for adoptive immunotherapy or for CAR T cell therapy. As a result, completely new therapeutic options have opened up for certain haematological cancers. A decisive factor for the success of these therapies is that CD8+ T cells do not undergo terminal differentiation during ex-vivo expansion but instead retain the phenotype of minimally differentiated T memory cells. In the past 20 years, knowledge on the dynamic metabolism of CD8+ T cells has expanded enormously. It has become clear that, on the one hand, the activation state and external influences such as cytokines, microenvironment and nutrient supply control the metabolism of the cell and, on the other hand, the metabolism of the cell itself influences its differentiation and function.
In mouse models the addition of 2-DG- an inhibitor of glycolysis- during ex-vivo expansion had a positive impact on differentiation of CD8+ T cells. Those cells, that had been cultured with 2-DG showed a less differentiated T-memory phenotype, resulting in increased re-expansion and improved anti-tumour activity upon transfer. In the present work this approach is tested in human CD8+ T cells and subsequently transferred to an antigen-specific model of priming and expansion.
In the first part naïve, human CD8+ T cells were non-specifically activated and cultured with different concentrations of 2-DG. This mode of blocking the glucose metabolism had dose-dependent effects on metabolism, activation, differentiation and proliferation. The aforementioned findings on the effect of 2-DG obtained on mouse cells could be confirmed with small quantitative differences.
In the second part this approach was transferred to a model of antigen-specific priming of CD8+ T cells using activated and peptide-loaded dendritic cells. In contrast to non-specific expansion, even a slight blockade of glucose utilization, during the early expansion phase up to 4 days after priming, led to a pronounced inhibition of expansion. This can mainly be attributed to the many times stronger proliferation that occurs during antigen-specific expansion. The strong proliferation is necessary because of the low frequency of antigen specific cells among the starting population of naïve CD8+ T cells. In addition, this increased rate of proliferation corresponds more closely to antigen-specific expansion in-vivo. Furthermore, it became clear that antigen-specific proliferation is highly dependent on glucose utilization, especially in the early expansion phase and less so during priming or late expansion. Even a temporary limitation of glucose utilization during this period resulted in a sustained impairment of proliferation.
In the experiments it became clear that in antigen-specific expansion, proliferation and differentiation are linked. Although the addition of 2-DG resulted in a higher proportion of CD8+ T cells with a minimally differentiated phenotype, the absolute number of these cells was lower than in the control group. Thus, blocking glucose metabolism does not uncouple antigen-specific proliferation and differentiation. A probable mechanistic explanation for this observation, which would still have to be experimentally confirmed for the antigen-specific expansion of CD8+ T cells, can be found in the cellular control loop of the proteins AMPK and mTOR. In CD8+ T cells they integrate the metabolic state on the one hand and stimuli for cell division and differentiation on the other.
These results led to the conclusion, that adding 2-DG is not beneficial in the expansion of antigen-specific CD8+ T cells for immunotherapy. In addition, the present works emphasizes that results, obtained from experiments with non-specifically activated t-cells, do not necessarily apply to models of antigen-specific expansion or the immune response in-vivo.
In a clinical side project, it was shown in a patient with multiple myeloma treated with a bi-specific, T cell-engaging antibody against BCMA that a homozygous loss of the coding gene occurred during disease progression. This is the first time that a homozygous deletion with subsequent loss of the antibody's target structure has been described as a resistance mechanism for this therapy. It was also shown that patients with multiple myeloma often have heterozygous alterations in genes that code for target structures of immunotherapies, even before T cell engaging therapies. This makes loss of both alleles more likely and can therefore represent a predisposition to future treatment resistance.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:37554
Date January 2024
CreatorsHüper, Sebastian
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds