Les récepteurs métabotropes au glutamate (mGluR) sont des RCPG de classe C. Ils sont exprimés dans le système nerveux central où, suite à l'activation par le glutamate, ils participent à la modulation de la transmission nerveuse. En raison de leur rôle essentiel dans la régulation de l'activité synaptique, ils représentent des cibles potentielles pour le développement de médicaments contre les troubles neurologiques et psychiatriques telles que la schizophrénie, l'épilepsie, l'anxiété et la douleur. Mon projet de recherche de doctorat a porté sur l'étude du mécanisme d'activation du domaine extracellulaire de liaison au ligand du mGluR (ECD), avec un accent particulier sur ce qui différencie au niveau moléculaire un agoniste partiel d'un agoniste total. A cette fin, j'ai utilisé une méthode innovante à l'échelle de la molécule unique appelée Transfert d'Energie par Résonance de Forster, développé pour l'étude de la dynamique conformationnelle des molécules individuelles à l'échelle de la nanoseconde. J'ai réussi à montrer que le dimère d'ECD oscille entre une conformation active et une conformation de repos sur une échelle de temps de ~100μsec et que les ligands influencent les vitesses de transition entre ces états avec des vitesses intermédiaires pour les agonistes partiels. Ces résultats sont validés par l'utilisation de mutants spécifiques et indiquent clairement que le rôle des ligands n'est pas de stabiliser une conformation donnée mais de modifier le comportement dynamique du récepteur. L'ensemble de ces résultats contribuent à une meilleure description du mécanisme d'activation des mGluRs, et ouvrent potentiellement la voie à la compréhension des RCPG en général. / Metabotropic Glutamate Receptors (mGluRs) are class C GPCRs, expressed throughout the central nervous system. They participate in the long term modulation of neural transmission following activation by the excitatory neurotransmitter glutamate. This critical role in the regulation of synaptic activity makes them promising targets in the development of drugs for the treatment of various neurologic and psychiatric disorders such as schizophrenia, epilepsy, anxiety and pain relief. My Ph.D. research project has focused on the study of the activation mechanism of the mGluR extracellular ligand binding Venus-Flytrap domain (VFT), with particular emphasis on the differences between partial and full agonists on a molecular level. To this aim, I have used a state-of-the-art single molecule Förster Resonance Energy Transfer (smFRET) approach, developed for the study of conformational dynamics of single molecules on the nanosecond to millisecond timescale. I have managed to show that the VFT-dimer constantly oscillates between an active and a resting conformation on a ~100µsec timescale. I also discovered that the role of ligands is to influence the transition rate between these boundary states, and that partial agonists display intermediate transition rates. My results, supported by the use of specific mutants, clearly indicate that the role of ligands is not to stabilize a given conformation but to modify the overall dynamic of the receptor, which favors a conformational selection mechanism. Altogether, these results represent a most-valuable contribution to the better understanding of the activation mechanism of mGluRs, and potentially GPCRs in general.
Identifer | oai:union.ndltd.org:theses.fr/2014MON20019 |
Date | 28 March 2014 |
Creators | Olofsson, Linnéa |
Contributors | Montpellier 2, Margeat, Emmanuel, Pin, Jean-Philippe, Rondard, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds