Return to search

GSK3: A Neuromodulator of Cocaine-Induced Behavioral Responses

Cocaine is a highly abused psychostimulant with repeated use potential culminating in addiction, a disease associated with compulsive drug seeking, use and high rates of relapse despite adverse consequences. It is well established that cocaine acts by binding to and blocking monoamine transporters therefore increasing synaptic extracellular monoamine concentrations. Cocaine also increases extracellular levels of the excitatory amino acid glutamate within the neural circuitry comprising the ascending dopamine system. Cocaine induces a number of behavioral and neurochemical manifestations following acute and repeated administration. As such, elucidating the molecular mechanisms involved in the behavioral and neuromodulatory effects of cocaine are critical to the development of effective pharmacotherapies for cocaine addiction. The overall aim of this research was to identify a novel kinase that may be involved in the behavioral effects of cocaine. Thus, we chose to investigate glycogen synthase kinase-3 (GSK3), which has recently gained attention as being critical in dopaminergic and glutamatergic signal transduction. GSK3 is a critical mediator of many intracellular signaling systems. The activity of GSK3 is regulated by several kinases including Akt, with inactivation occurring via phosphorylation of the inhibitory serine-21(α-isoform) and serine-9 (β-isoform) residues. It is well established that acute cocaine administration causes hyper-locomotion in animal models and that repeated cocaine administration elicits a sensitized or increased response to the locomotor-stimulating properties of the drug. The studies outlined herein sought to determine whether non-selective and selective inhibition of GSK3 would regulate acute cocaine-induced hyper-locomotion. Further, we investigated the role of GSK3 in the development of cocaine-induced locomotor sensitization. Results of the research outlined herein demonstrate that pharmacological inhibition of GSK3 reduced both the acute behavioral responses to cocaine and the long-term neuroadaptations produced by repeated cocaine, therefore suggesting a role for GSK3 in the behavioral manifestations associated with cocaine exposure. Previous studies have assessed the role of the dopamine D1 receptor in locomotor behaviors. As cocaine indirectly activates dopamine D1 receptors, we investigated whether activation of GSK3 was necessary for the expression of dopamine D1 receptor-mediated behaviors. To assess the role of GSK3 in dopamine D1 receptor-induced hyperactivity, GSK3 was inhibited prior to administration of the selective dopamine D1 receptor agonist SKF-82958. Selective inhibition of GSK3 reduced ambulatory and stereotypic activity produced by SKF-82958. These data implicate a role for GSK3 in the behavioral manifestations associated with dopamine D1 receptor activation. To further assess the importance of GSK3 in cocaine-induced behaviors we investigated the role of GSK3 in various facets of cocaine-conditioned reward. We show that selective inhibition of GSK3 prevented the development of cocaine-conditioned reward using a conditioned place preference paradigm, indicating a reduction in the rewarding properties of cocaine. Relapse to drug-seeking can be precipitated by certain stimuli including the drug itself, drug-paired contextual cues and stress. Memory of drug-paired cues is highly resistant to extinction and the molecular mechanisms underlying relapse have not been clearly defined. Our results demonstrate that inhibition of GSK3 interfered with the reconsolidation of cocaine-associated contextual memories by preventing the retrieval of cocaine conditioned place preference. Inhibition of GSK3 in a neutral environment 24 hours prior to the test for reinstatement, however, did not prevent reinstatement of cocaine place preference following a cocaine priming injection. Thus, our results indicate that GSK3 serves an important role in cocaine-conditioned reward and is a critical intracellular signaling protein for the development of cocaine place preference. GSK3 is also essential to the reconsolidation and subsequent retrieval of cocaine-associated contextual cues. In addition to studying the role of GSK3 in cocaine-induced behaviors, we assessed the neuromodulatory effects of cocaine on GSK3 activity. As stated previously, the activity of GSK3 is regulated by a number of kinases including Akt (protein kinase B). Recent evidence suggests that psychostimulants regulate the activity of Akt and subsequently GSK3 in various brain regions. Here, the ability of cocaine to regulate the activity of Akt and GSK3 was investigated. Enzymatic activity was assessed by determining protein phosphorylation in the brain. Mice administered acute injections of cocaine showed a significant decrease in phosphorylated Akt (Thr. 308) and GSK3β; in the caudate putamen as determined by Western blot analysis. Cocaine did not alter pAkt (Thr. 308) or pGSK3β; in the nucleus accumbens or frontal cortex. The role of dopaminergic and glutamatergic receptors on cocaine-induced attenuation of pAkt (Thr. 308) and pGSK3β; was also assessed. Blockade of the dopamine D1, D2 or glutamatergic NMDA receptor prevented cocaine-induced attenuation of pGSK3β; in the caudate putamen. Only blockade of the dopamine D2 receptor prevented the effect of cocaine on pAkt (Thr. 308) levels in the caudate putamen. The results of the present study indicate that the activity of Akt and GSK3 is selectively regulated in the brain following acute cocaine, an effect that is contingent upon both dopaminergic and glutamatergic receptor regulation. In summary, the experiments described in this dissertation tested the initial hypothesis that GSK3 mediates acute cocaine-induced hyperactivity and locomotor sensitization. Acute cocaine administration increased the phosphorylation of GSK3 in the caudate putamen, therefore enhancing kinase activity. Further, the increase in GSK3 activity following cocaine administration is contingent upon activation of the dopamine D1 and D2 receptors and the glutamatergic NMDA receptor. Results presented herein also demonstrate a role for GSK3 in cocaine-conditioned reward. Selective inhibition of GSK3 prevented the development of cocaine conditioned place preference. Inhibition of GSK3 also prevented the retrieval of cocaine contextual memories, therefore playing an important role in reconsolidation. Thus, the results presented in this dissertation indicate that GSK3 is a neuromodulator of cocaine-induced behaviors and may be an important factor underlying cocaine addiction. / Pharmacology

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/1924
Date January 2009
CreatorsMiller, Jonathan S.
ContributorsUnterwald, Ellen M., Ashby, Barrie, Daniel, James L., Ehrlich, Michelle E., Kirby, Lynn, Tallarida, Ronald J.
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format155 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/1906, Theses and Dissertations

Page generated in 0.0309 seconds