Return to search

Characterisation and functional analysis of the developmentally regulated expression site associated gene 9 family in Trypanosoma brucei

Trypanosoma brucei is a protozoan parasite that is the causative agent of sleeping sickness in sub-Saharan Africa. T. brucei has a complex life cycle involving passage between a mammalian host and the tsetse fly. The parasite evades the mammalian immune system via expression of Variant Surface Glycoprotein (VSG) on the cell surface. VSG genes are expressed at telomeric expression sites and at these sites are a number of Expression Site Associated Genes (ESAGs). One unusual ESAG, ESAG9, is developmentally regulated: RNA for these genes accumulates during the transition from slender to stumpy cells in the mammalian bloodstream and cellassociated protein is only detected transiently in stumpy and differentiating cells. Transgenic cell lines were generated which ectopically express one or more members of the ESAG9 gene family. Biochemical and cytological analyses using these cell lines indicated that some members of this family are glycosylated and GPI-anchored, and also that one gene, ESAG9-K69, is secreted. ESAG9-K69 is also secreted by wild-type stumpy parasites. In vivo experiments with tsetse flies did not conclusively show whether ESAG9 proteins play a role in the establishment of a tsetse fly mid-gut infection by transgenic trypanosomes. However, In vivo and ex vivo experiments using the mouse model of trypanosomiasis indicated that expression of ESAG9 proteins may alter parasitaemia in the mouse and results in a significant decrease in the proportion of CD4+ T cells in the mouse spleen.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562546
Date January 2009
CreatorsBarnwell, Eleanor M.
ContributorsMatthews, Keith. : Blaxter, Mark
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4001

Page generated in 0.0156 seconds