Return to search

Interaction of Heparan Sulfate with Pro- and Anti-Angiogenic Proteins

Heparan sulfate (HS) is an unbranched and negatively charged polysaccharide of the glycosaminoglycan family, based on the repeated (GlcNAcα1-4GlcAβ1-4) disaccharide structure. The HS backbone is modified by epimerization and sulfation in various positions. HS chains are composed of N-sulfated (NS) domains – predominant locations for further modification steps –, the poorly modified N-acetylated (NA) domains and the alternating NA/NS-domains. HS is present at the cell surface and in the extra-cellular matrix and interacts at these sites with various proteins involved in numerous biological processes, such as angiogenesis. Both pro- and anti-angiogenic proteins can interact with HS and this study was focused on how HS binds to the anti-angiogenic proteins endostatin (ES) and histidine-rich glycoprotein (HRGP) and to pro-angiogenic fibroblast growth factors (FGFs). Here we show that ES recognizes NS-domains in HS spaced by NA-disaccharides, and that binding to ES is abolish through cleavage at these NA-disaccharides. HRGP335, a peptide derived from the His/Pro-rich domain of HRGP is shown to bind to heparin and HS to the same extent as full-size HRGP, in a Zn2+-dependent manner. Moreover, the ability of HRGP to inhibit endothelial cell migration is located to the same region of the protein. We analyzed HS structure in respect to binding to HRGP335 and FGF-2, and show that the ability of HS to bind to those proteins depends on chain length and composition. Finally, the role of HS in FGF–HS–FGF receptor ternary complexes is evaluated using biosynthetic analogs of NS-domains. For stabilization of such complexes the overall sulfation degree of HS seems to play a more pronounced role than the exact distribution of sulfate groups. The results presented in this thesis contribute to a greater understanding of the role of HS in angiogenesis and may provide valuable information for the development of cures against angiogenesis-related disorders.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-6638
Date January 2006
CreatorsVanwildemeersch, Maarten
PublisherUppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 125

Page generated in 0.002 seconds