Return to search

NO/cGMP and ROS Pathways in Regulation of Platelet Function and Megakaryocyte Maturation / NO/cGMP und ROS Singnalwege in Regulation der Plättchen Funktion und Megakaryozyten Entwicklung

Blutplättchen spielen unter physiologischen Bedingungen eine wichtige Rolle bei der Erhaltung der Hämostase. So verhindern sie ein andauerndes Bluten von Wunden, indem sie in Blutgefässen zwischen normalen Zellen des Endothels und beschädigten Bereichen unterscheiden und sich dort gezielt anheften können. Das Zusammenspiel der Plättchenagonisten und den dazugehörigen Rezeptoren wird durch intrazelluläre Signalmoleküle kontrolliert, die die Aktivierung der Blutplättchen regulieren. Äusserst wichtige intrazellulare Signalmoleküle stellen dabei die zyklischen Nukleotide cGMP und cAMP dar, die bei der Hemmung der Plättchen beteiligt sind. Die Bildung von cGMP und cAMP in den Blutplättchen wird durch die aus dem Endothel freigesetzten Moleküle NO und Prostacyclin (PGI2) stimuliert, die ihrerseits Blutplättchen hemmen, indem sie Proteinkinase G (PKG) und Proteinkinase A (PKA) aktivieren. Neuerdings wird vorgeschlagen, dass es sich bei ROS („reactive oxygen species“) um einen neuen Modulator bei der Signaltransduktion zwischen verschiedenen Zelltypen handelt. Die hier zusammengefasste Arbeit beschreibt die Rolle der ROS-Produktion bei der Aktivierung von Blutplättchen, die Beziehung zwischen dem NO/cGMP/PKG I Signalweg und der ROS bzw. MAP-Kinase Signaltransduktion, und die Rolle von zyklischen Nukleotiden bei der Entwicklung von Megakaryozyten und Blutplättchen. Werden Blutplättchen durch unterschiedliche Einflüsse aktiviert, so produzieren sie über die Aktivierung von NAD(P)H-Oxidase nur intrazelluläres aber nicht extrazelluläres ROS. Dabei beinflusst das in den Blutplättchen produzierte ROS signifikant die Aktivierung von αIIbβ3 Integrin, nicht jedoch die Sekretion von alpha- bzw. dichten Granula oder die Gestalt der Blutplättchen. Die Thrombin-induzierte Integrin αIIbβ3-Aktivierung ist nach Behandlung der Blutplättchen mit Hemmstoffen der NAD(P)H-Oxidase oder Superoxid-Fängern signifikant reduziert. Diese Inhibitoren reduzieren auch die Aggregation der Blutplättchen bzw. die Thrombusbildung auf Kollagen, wobei diese Effekte unabhängig vom NO/cGMP Signalweg vermittelt werden. Sowohl ADP, das von dichten Granula der Blutplättchen sezerniert wird und zur Aktivierung von P2Y12-Rezeptoren führt, als auch die Freigabe von Thromboxan A2 stellen wichtige, vorgeschaltete Vermittler bei der p38 MAP Kinase-Aktivierung durch Thrombin dar. Jedoch spielt die p38 MAP-Kinase-Aktivierung keine signifikante Rolle bei der Thrombin-induzierten Kalzium-Mobilisierung, P-Selektin Exprimierung, αIIbβ3 Integrin Aktivierung oder Aggregation der Blutplättchen. Abschliessend kann festgestellt werden, dass sich die Aktivierung der PKG insgesamt klar hemmend auf die p38 and ERK MAP-Kinasen in menschlichen Blutplättchen auswirkt. Desweiteren zeigt diese Studie, dass zyklische Nukleotide nicht nur die Blutplättchen hemmen, sondern auch einen Einfluss auf die Entwicklung der Megakaryozyten und Blutplättchen haben, aber auf unterschiedliche Weise. cAMP ist an der Differenzierung von embryonalen hämatopoietischen Zellen zu Megakaryozyten beteiligt, wobei cGMP keine Rolle bei diesem Prozess spielt. Während PKA in embryonalen Zellen schon vertreten ist, steigt beim Reifungsprozess der Megakaryozyten die Expression von Proteinen, die bei der cGMP Signalverbreitung („soluble guanylyl cyclase“, sGC; PKG) mitwirken, stetig an. In der letzten Phase der Reifung von Megakaryozyten, die durch die Freisetzung der Blutplättchen charakterisiert ist, zeigen cGMP und cAMP leicht divergierende Effekte: cGMP verstärkt die Bildung von Blutplättchen, während cAMP dieselbe reduziert. Dies deutet auf einen fein abgestimmten Prozess hin, abhängig von einem Stimulus, der von den benachbarten Zellen des Sinusoid-Endothels stammen könnte. Die Ergebnisse dieser Dissertation tragen zu einen besseren Verständnis der Regulation von Blutplättchen sowie der möglichen molekularen Mechanismen bei, die eine Rolle bei der Reifung von Megakaryozyten im vaskularen Mikroumfeld des Knochenmarks innehaben. / In physiological conditions platelets have a major role in maintaining haemostasis. Platelets prevent bleeding from wounds by distinguishing normal endothelial cells in vasculature from areas with lesions to which they adhere. Interaction of platelet agonists and their receptors is controlled by intracellular signaling molecules that regulate the activation state of platelets. Very important intracellular signaling molecules are cyclic nucleotides (cGMP and cAMP), both involved in inhibition of platelet activation. Formation of cGMP and cAMP in platelets is stimulated by endothelial-derived NO and prostacyclin (PGI2), which then mediate inhibition of platelets by activating protein kinase G (PKG) and protein kinase A (PKA). Recently, it has been suggested that reactive oxygen species (ROS) represent new modulators of cell signaling within different cell types. The work summarized here describes the involvement of platelet ROS production in platelet activation, the relation of NO/cGMP/PKG I pathway to ROS and to mitogen-activated protein kinases (MAP kinase) signaling, and the involvement of cyclic nucleotides in megakaryocyte and platelet development. Platelets activated with different agonists produce intracellular but not extracellular ROS by activation of NAD(P)H oxidase. In addition, ROS produced in platelets significantly affects αIIbβ3 integrin activation but not alpha/dense granule secretion and platelet shape change. Thrombin induced integrin αIIbβ3 activation is significantly decreased after pretreatment of platelets with NAD(P)H oxidase inhibitors and superoxide scavengers. These inhibitors also reduce platelet aggregation and thrombus formation on collagen under high shear and achieve their effects independently of the NO/cGMP pathway. ADP secreted from platelet dense granules with subsequent activation of P2Y12 receptors as well as thromboxane A2 release are found to be important upstream mediators of p38 MAP kinase activation by thrombin. However, p38 MAP kinase activation does not significantly contribute to calcium mobilization, P-selectin expression, αIIbβ3 integrin activation and aggregation of human platelets in response to thrombin. Finally, PKG activation does not stimulate, but rather inhibit, p38 and ERK MAP kinases in human platelets. Further study revealed that cyclic nucleotides not only inhibit platelet activation, but are also involved, albeit differentially, in megakaryocyte and platelet development. cAMP is engaged in haematopoietic stem cell differentiation to megakaryocytes, and cGMP has no impact on this process. While PKA is already present in stem cells, expression of proteins involved in cGMP signaling (soluble guanylyl cyclase, sGC; PKG) increases with maturation of megakaryocytes. In the final step of megakaryocyte maturation that includes release of platelets, cGMP and cAMP have mild but opposing effects: cGMP increases platelet production while cAMP decreases it indicating a finely regulated process that could depend on stimulus coming from adjacent endothelial cells of sinusoids in bone marrow. The results of this thesis contribute to a better understanding of platelet regulation and of the possible molecular mechanisms involved in megakaryocyte maturation in bone marrow vascular microenvironment.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:1868
Date January 2007
CreatorsJurak Begonja, Antonija
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageGerman
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds