We sought to investigate the role of the Planar Cell Polarity (PCP) pathway in neuronal positioning along the Anterior-Posterior (AP) axis of C. elegans, and chose the worm’s DD-type motor neurons as a model. The six DD neurons (DD1-DD6) are evenly spaced in the ventral nerve cord of wild type animals. Here we showed that mutations in core PCP genes caused DD neuron spacing and positioning defects. prkl-1 double mutant combinations with vang-1 and fmi-1 showed a suppression of the more severe prkl-1 single mutant defects, which was evidence of genetic interactions between these PCP components. We also conducted a candidate screen of Frizzled, Dishevelled, Wnt, and ROCK genes, and found that dsh-1/Dishevelled, mom-2/Wnt and let-502/ROCK also played roles in DD neuronal positioning. Both vang-1 and prkl-1 were found to function within the nervous system to guide DD neuronal positioning, and prkl-1 was further identified as playing a cell autonomous role. The origins of observed DD neuron anterior positioning defects were investigated during embryogenesis, in which 1.5 fold stage prkl-1(ok3182) embryos displayed delayed intercalation of the DD neurons. This represents a novel role for the PCP pathway in mediating DD neuronal intercalation.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31521 |
Date | January 2014 |
Creators | Tanner, Raymond |
Contributors | Colavita, Antonio |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds