Return to search

Peptide sequence effects control the single pot reduction, nucleation, and growth of Au nanoparticles

Yes / Peptides have demonstrated unique capabilities to fabricate inorganic nanomaterials of numerous compositions through noncovalent binding of the growing surface in solution. In this contribution, we demonstrate that these biomolecules can control all facets of Au nanoparticle fabrication, including Au3+ reduction, without the use of secondary reagents. In this regard using the AuBP1 peptide, the N-terminal tryptophan residue is responsible for driving Au3+ reduction to generate Au nanoparticles passivated by the oxidized peptide in solution, where localized residue context effects control the reducing strength of the biomolecule. The process was fully monitored by both time-resolved monitoring of the growth of the localized surface plasmon resonance and transmission electron microscopy. Nanoparticle growth occurs by a unique disaggregation of nanoparticle aggregates in solution. Computational modeling demonstrated that the oxidized residue of the peptide sequence does not impact the biomolecule’s ability to bind the inorganic surface, as compared to the parent peptide, confirming that the biomolecule can be exploited for all steps in the nanoparticle fabrication process. Overall, these results expand the utility of peptides for the fabrication of inorganic nanomaterials, more strongly mimicking their use in nature via biomineralization processes. Furthermore, these capabilities enhance the simplicity of nanoparticle production and could find rapid use in the generation of complex multicomponent materials or nanoparticle assembly. / Air Force Office of Scientific Research, grant FA9550-12-1-0226.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/15761
Date08 August 2016
CreatorsMunro, C.J., Hughes, Zak E., Walsh, T.R., Knecht, M.R.
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeArticle, Accepted Manuscript
Rights© 2016 ACS. This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.jpcc.6b06046

Page generated in 0.0017 seconds