There is a demand for new straightforward approaches for stabilization and solubilization of various nanoparticulate materials in their colloidal form, that pave way for fabrication of materials possessing compatibility with wide range of dispersing media. Therefore in this thesis a new general method to form stable nanocrystals in water and organics using amphiphilic polymers generated through simple and low cost techniques is presented and discussed. Amphiphilic coating agents are formed using thiolated or carboxylated polyethylene glycol methyl ether (mPEG-SH) as a starting material. These materials are available with a wide variety of chain lengths.
The method of obtaining of amphiphilic NPs is quite general and applicable for semiconductor CdTe nanocrystals as well as nanoscale noble metal (Au) and magnetic (Fe3O4) particles. This approach is based on anchoring PEG segment to the surface of a nanoparticle to form an amphiphilic palisade. Anchoring is realized via interaction of –SH (for CdTe and Au) or –COOH (in the case of magnetite) functional groups with particle’s surface. The resulting amphiphilicity of the nanocrystals is an inherent property of their surface and it is preserved also after careful washing out of solution of any excess of the ligand. The nanocrystals reversibly transfer between different phases spontaneously, i.e. without any adjustment of ionic strength, pH or composition of the phases. Such reversible and spontaneous phase transfer of nanocrystals between solvents of different chemical nature has a great potential for many applications as it constitutes a large degree of control of nanocrystals compatibility with technological processes or with bio-environments such as water, various buffers and cell media as well as their assembly and self-assembly capabilities.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-82718 |
Date | 20 January 2012 |
Creators | Dubavik, Aliaksei |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Dr. rer. nat. Nikolai Gaponik, Prof. Dr. rer. nat. habil. Alexander Eychmüller, Prof. Dr. rer. nat. habil. Rainer Jordan |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0023 seconds