Return to search

The Doornhoek gold deposit in the Limpopo Belt, South Africa : an example of an Archaean shear zone hosted deposit formed at high-grade metamorphic conditions

D.Phil. / Lode-gold deposits usually occur in granite-greenstone terranes of low- to medium-grade of metamorphism. Such deposits are well studied in terms of their petrogenesis, ore mineralogenesis and structural control. Gold occurrences associated with high-grade terranes are, however, also known from the Yilgam Block in Australia (Griffin's Find) and Northern Marginal Zone of the Limpopo Belt in Zimbabwe (Renco), but the genesis of these deposits are not as well understood as that of their lower grade counterparts. The Doornhoek lode-gold deposit, situated in the granulite terrane of the Southern Marginal Zone of the Limpopo Belt in South Africa displays an important sequence of structural and metamorphic events that proved to be very useful in understanding the formation of metamorphic gold deposits formed under upper-amphibolite - granulite facies conditions. Structurally the Doornhoek gold deposit is situated in a large low-angle D, fold plunging towards the west at 10-15 °. The fold structure and the mineralised zone are affected by D2-strike-slip shear zones which occur both within and along the outer contacts of the ore zone. The gold deposit is also affected by southward verging D3 shear zones which thrusted Baviaanskloof Gneiss over and onto the Doomhoek Ore Body. The Doomhoek Gold Deposit is also situated in a highly altered zone of metasomatised rocks within the zone of rehydration of the Southern Marginal Zone. The actual Ore Body is represented by a remnant of BIF, mafic and ultramafic rocks surrounded by Baviaanskloof Gneiss. The alteration process, caused by high-temperature fluids channeled along the D2 shear zones was responsible for the formation of the different metasomatic lithologies. These altered rocks initially experienced a regional hydration event followed by the high-temperature metasomatic event. The very intense metasomatic activity was synchronous with the growth of prograde-zoned garnet and gold mineralisation associated with quartz veins. This scenario is suggested by the fact that gold associated with Zn, Ge, As, Y, Zr and Ni was trapped in the mineralised inner-ring of the zoned garnet, by the REE pattern and presence of Th232 and U238 in the biotite-garnetiferous formation, and by the mobility of major elements such as A1 203, K2O, SiO2 and TiO2 associated with the metasomatic activity. The alteration is probably related to externally derived magmatic fluids mixed with metamorphic aquitards that were active in both open and close system conditions along deep seated D2 shear zones. These fluids are characterised by the presence of high-density CO 2-rich and high salinity fluid inclusions. The gold mineralisation is closely associated with pyrrhotite, magnetite, lollingite, arsenopyrite, chalcopyrite, ilmenite, pentlandite, sphalerite and gold. The gold has a very low fineness (520), typical of gold precipitated from hydrothermal solutions at high-grade conditions. The textural relationships of the ore minerals hosted by the quartz veins, furthermore demonstrate a prograde pattern of mineralisation, similar as in the case of mineralisation trapped within different zones of the zoned garnet porphyroblast. The dark inner-ring of the garnet is characterised by high concentrations of sulphides, oxides and gold. The mineralising event initially deposited sphalerite and arsenopyrite at low temperatures of up to 569 °C with temperatures increasing to 673 °C, and even up to 750°C when lollingite was formed. Most of the gold is related to As-rich arsenopyrite, lollingite and graphite at temperatures ranging from upper-amphibolite facies to lower-granulite facies metamorphic conditions. The Doornhoek gold deposit is an example of a high-grade lode-gold deposit formed during a prograde hydrothermal event and demonstrates unequivocally the possibility of economic gold mineralisation during granulite facies conditions. This observation has important implications for gold exploration in high-grade geological terranes that to date have been mostly ignored by the gold mining industry.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:9738
Date07 September 2012
CreatorsStefan, Laurentiu Daniel
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds