This paper is focus on flowers recognition in an image and class classification. Theoretical part is focus on problematics of deep convolutional neural networks. The practical part if focuse on created flowers database, with which it is further worked on. The database conteins it total 13000 plant pictures of 26 spicies as cornflower, violet, gerbera, cha- momile, cornflower, liverwort, hawkweed, clover, carnation, lily of the valley, marguerite daisy, pansy, poppy, marigold, daffodil, dandelion, teasel, forget-me-not, rose, anemone, daisy, sunflower, snowdrop, ragwort, tulip and celandine. Next is in the paper described used neural network model Inception v3 for class classification. The resulting accuracy has been achieved 92%.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:376895 |
Date | January 2018 |
Creators | Jedlička, František |
Contributors | Kříž, Petr, Přinosil, Jiří |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0012 seconds