In this effort a new measurement technique for the lateral Goos-Hanchen shift is developed, analyzed, and demonstrated. The new technique uses classical image formation methods fused with modern detection and analysis methods to achieve higher levels of sensitivity than obtained with prior practice. Central to the effort is a new mathematical model of the dispersion seen at a step shadow when the Goos-Hanchen effect occurs near critical angle for total internal reflection. Image processing techniques are applied to measure the intensity distribution transfer function of a new divergence model of the Goos-Hanchen phenomena providing verification of the model. This effort includes mathematical modeling techniques, analytical derivations of governing equations, numerical verification of models and sensitivities, optical design of apparatus, image processing
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1584 |
Date | 08 August 2007 |
Creators | Gray, Jeffrey Frank |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0018 seconds