Return to search

Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces often requires welding in the assembly; welding drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment.
In this study a localized post weld heat treatment is used to gather experimental data. The data is then used to derive unknown heat transfer coefficients that are necessary for theoretically modeling heat treatments. With the derived coefficients that have been found one can theoretically model heat treatment scenarios specific to the situations and provide results that are reliable and provide insight as to what parameters will provide the best results.
This research is very beneficial to the joining of metals industry because it provides a way to ensure the method used to heat treat the welded section is being properly done, and the required heat treatment is achieved. It is applicable to many different geometries so that it can be modified to specific situations.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7141
Date01 August 2017
CreatorsWalker, Jacob D.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0023 seconds