In this master thesis, a real-time control system that stabilizes the rotational rates of a tri-copter, has been studied. The tricopter is a rotorcraft with three rotors. The tricopter has been modelled and identified, using system identification algorithms. The model has been used in a Kalman filter to estimate the state of the system and for design ofa model based controller. The control approach used in this thesis is a model predictive controller, which is a multi-variable controller that uses a quadratic optimization problem to compute the optimal con-trol signal. The problem is solved subject to a linear model of the system and the physicallimitations of the system. Two different types of algorithms that solves the MPC problem have been studied. These are explicit MPC and the fast gradient method. Explicit MPC is a pre-computed solution to the problem, while the fast gradient method is an online solution. The algorithms have been simulated with the Kalman filter and were implemented on themicrocontroller of the tricopter.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-79066 |
Date | January 2012 |
Creators | Barsk, Karl-Johan |
Publisher | Linköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.1318 seconds