Regression models with correlated errors lead to nonadditivity of the information matrix. This makes the usual approach of design optimization (approximation with a continuous design, application of an equivalence theorem, numerical calculations by a gradient algorithm) impossible. A method is presented that allows the construction of a gradient algorithm by altering the information matrices through adding of supplementary noise. A heuristic is formulated to circumvent the nonconvexity problem and the method is applied to typical examples from the literature. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
Identifer | oai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_a25 |
Date | January 1996 |
Creators | Pazman, Andrej, Müller, Werner |
Publisher | Department of Statistics and Mathematics, WU Vienna University of Economics and Business |
Source Sets | Wirtschaftsuniversität Wien |
Language | English |
Detected Language | English |
Type | Paper, NonPeerReviewed |
Format | application/pdf |
Relation | http://epub.wu.ac.at/1720/ |
Page generated in 0.0019 seconds