Return to search

Investigação teórica de nanoestruturas do tipo grafeno para aplicação em baterias de íons de lítio / Theoretical investigation of grephene-like nanostructures for application in lithium ion batteries

A maior parte da energia consumida no mundo provém da queima de combustíveis fósseis, responsáveis pelo desenvolvimento da sociedade moderna, mas, também, por diversos danos ao meio ambiente. Desse modo, a exploração de fontes limpas e alternativas de energia renovável, tais como a solar e a eólica, tem ganhado grande importância e atenção dos pesquisadores nos últimos anos. Entretanto, o armazenamento destas formas de energia precisa ser eficiente, para que possam ser utilizadas nos períodos de indisponibilidade da fonte. Neste sentido, as baterias são uma das mais eficazes formas de geração e armazenamento de energias renováveis. No entanto, seu uso ainda é limitado, principalmente para aplicação em veículos automotores, que são um dos responsáveis pela emissão de gases poluentes. O principal fator limitante está relacionado às baixas densidades energéticas nos materiais utilizados para compor os elementos das baterias modernas. O desenvolvimento experimental de novos materiais, para este fim, é um trabalho demorado e caro, de tal forma que métodos teóricos têm sido usados com sucesso para prever o comportamento de novos materiais, apropriados para utilização como componentes básicos das baterias. Neste projeto serão investigados, teoricamente, materiais nanoestruturados para aplicação como eletrodos de baterias de íons de lítio, uma das formas mais populares de baterias atualmente. Neste trabalho apresentamos as propriedades estruturais, eletrônicas e vibracionais da grafite e dos sistemas bidimensionais grafeno, SiC e CN utilizando cálculos ab initio baseados na teoria do funcional da densidade, onde se utilizou o método de pseudopotencial PAW (Projector Augmented Wave) e aproximação van der Waals (optB88-vdW) para o termo de troca-correlação. A grafite e o grafeno foram estudados para validar o método aplicado, o qual foi usado para estudar as estruturas de SiC (bicamadas) e CN (monocamada e bicamada) como possíveis nanomateriais para compor ânodos de baterias de íons de lítio. Estudamos a adsorção de Li nas bicamadas de SiC em diferentes sítios encontrando a posição estável e as possíveis vantagens e desvantagens de utilizá-las como ânodos de baterias de íons de lítio. As estruturas CN não se mostraram ser sistemas viáveis, uma vez que são dinamicamente instáveis. No entanto, estudamos as propriedades de camadas de CN hidrogenadas, que são dinamicamente estáveis e possíveis candidatas para aplicação em baterias de lítio. / Most of the energy consumed in the world comes from the burning of fossil fuels, responsible for the development of modern society, but also for various damages to the environment. Thus, the exploration of clean and alternative sources of renewable energy, such as solar and wind, has gained great importance and attention from researchers in recent years. However, the storage of these forms of energy must be efficient, so that they can be used during periods of unavailability of the source. In this sense, batteries are one of the most effective forms of generation and storage of renewable energies. However, its use is still limited, mainly for application in automotive vehicles, which are one of the responsible for the emission of polluting gases. The main limiting factor is related to the low energy densities in the materials used to compose the elements of modern batteries. The experimental development of new materials for this purpose is a time consuming and expensive work, so that theoretical methods have been used successfully to predict the behavior of new materials suitable for use as basic components of the batteries. In this project it will be investigated, theoretically, nanostructured materials for application as electrodes of lithium-ion batteries, currently, one of the most popular forms of batteries. In this work we present the structural, electronic and vibrational properties of graphite and two-dimensional graphene, SiC and CN systems using ab initio calculations based on the density functional theory, where the pseudopotential PAW (Projector Augmented Wave) method and van der Waals approximation (optB88-vdW) for the exchange-correlation were used. Graphite and graphene were studied to validate the applied method, which was used to study the SiC (bilayer) and CN (monolayer and bilayer) structures as possible nanomaterials to compose anodes of lithium-ion batteries. We studied the adsorption of Li in the SiC bilayers at different sites, finding the stable position and the possible advantages and disadvantages of using them as anodes of lithium-ion batteries. The CN structures have not been shown to be viable systems, since they are dynamically unstable. However, we have studied the properties of hydrogenated CN layers, which are dynamically stable and possible candidates for application in lithium batteries.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22052018-154906
Date29 March 2018
CreatorsBruno Bueno Ipaves Nascimento
ContributorsLucy Vitoria Credidio Assali, Luiz Tadeu Fernandes Eleno, Marcelo Marques
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds