Return to search

Polypharmacy Side Effect Prediction with Graph Convolutional Neural Network based on Heterogeneous Structural and Biological Data / Förutsägning av biverkningar från polyfarmaci med grafiska faltningsneuronnät baserat på heterogen strukturell och biologisk data

The prediction of polypharmacy side effects is crucial to reduce the mortality and morbidity of patients suffering from complex diseases. However, its experimental prediction is unfeasible due to the many possible drug combinations, leaving in silico tools as the most promising way of addressing this problem. This thesis improves the performance and robustness of a state-of-the-art graph convolutional network designed to predict polypharmacy side effects, by feeding it with complexity properties of the drug-protein network. The modifications also involve the creation of a direct pipeline to reproduce the results and test it with different datasets. / För att minska dödligheten och sjukligheten hos patienter som lider av komplexa sjukdomar är det avgörande att kunna förutsäga biverkningar från polyfarmaci. Att experimentellt förutsäga biverkningarna är dock ogenomförbart på grund av det stora antalet möjliga läkemedelskombinationer, vilket lämnar in silico-verktyg som det mest lovande sättet att lösa detta problem. Detta arbete förbättrar prestandan och robustheten av ett av det senaste grafiska faltningsnätverken som är utformat för att förutsäga biverkningar från polyfarmaci, genom att mata det med läkemedel-protein-nätverkets komplexitetsegenskaper. Ändringarna involverar också skapandet av en direkt pipeline för att återge resultaten och testa den med olika dataset.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-288537
Date January 2020
CreatorsDiaz Boada, Juan Sebastian
PublisherKTH, Numerisk analys, NA
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020;390

Page generated in 0.0026 seconds