Cette thèse propose une nouvelle approche de découverte de signatures de familles (et superfamilles) d'enzymes. Dans un premier temps, étant donné un échantillon aligné de séquences appartenant à une même famille, cette approche infère des grammaires algébriques caractérisant cette famille. Pour ce faire, de nouveaux principes de généralisation et de nouvelles classes de langages ont été introduites sur la base de la substituabilité locale. Un algorithme a également été développé à cet effet qui produit une grammaire réduite, conservant la structuration des exemples, d'un langage substituable. Dans un second temps, ce manuscrit présente une méthode de classification des séquences d'une superfamille en familles à l'aide d'une analyse de concepts formels basée sur l'alignement des séquences qui permet la détection de nouvelles familles et la découverte des motifs fonctionnels pour améliorer les signatures précédentes. / This thesis proposes a new approach to discover signatures of families (and superfamilies) enzymes. At first, given a sample of aligned sequences belonging to the same family, this approach infers context-free grammars characteristic of this family. To do this, new principles of generalization and new classes have been introduced based on substitutability. An algorithm has also been developed for this purpose, which produces a reduced grammar able to retain the structure of examples. In a second step, this manuscript presents a method for classification of a superfamily sequences into families with a formal concept analysis based on alignement sequences allowing detection of new families and the discovery of patterns to improve functional previous signatures.
Identifer | oai:union.ndltd.org:theses.fr/2014REN1S082 |
Date | 16 December 2014 |
Creators | Garet, Gaëlle |
Contributors | Rennes 1, Nicolas, Jacques, Coste, François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds